Set Theory

Mongi BLEL

King Saud University

March 27, 2024

Table of contents

(2) Algebras and σ -Algebras

3 Monotone Class and σ -Algebra

Elementarily Operations on Sets

In what follows, X is a nonempty set. We denote by $\mathscr{P}(X)$ the collection of subsets of X, $(\mathscr{P}(X) \text{ called also the power set}, \mathscr{P}(X) = \{A : A \subset X\}$. If A and B are in $\mathscr{P}(X)$, we put $A \setminus B := \{x \in A \text{ and } x \notin B\} = A \cap B^c$. $A \Delta B = (A \setminus B) \bigcup (B \setminus A)$ called symmetric difference of B from A, and if A = X, $X \setminus B = B^c$

Elementarily Operations on Sets

Algebras and σ -Algebras Monotone Class and σ -Algebra

Definition

[Characteristic functions of sets] For any subset $A \in \mathscr{P}(X)$, we define the characteristic function χ_A (or the indicator function) of A by $\chi_A(x) = 1$; $\forall x \in A$ and $\chi_A(x) = 0$; $\forall x \notin A$.

Properties

All the operations on sets can be translated easily in term of characteristic functions of sets by the correspondence: $A \longrightarrow \chi_A$ when $A \in \mathscr{P}(X)$. We have the following relations:

$$\mathbf{2} \quad \chi_{A \cap B} = \chi_A \cdot \chi_B \cdot$$

$$\bullet \chi_{A\Delta B} = \mid \chi_A - \chi_B \mid .$$

Properties

• If $(A_n)_{n \in \mathbb{N}}$ is a sequence of subsets of X, then

$$\chi_{\bigcap_n A_n} = \inf_n \chi_{\{\bigcap_{p \le n} A_p\}} = \lim_{n \to +\infty} \prod_{k=1}^n \chi_{A_k}.$$

$$\chi_{\bigcup_n A_n} = \sup_n \chi_{\{\bigcup_{p \le n} A_p\}} = \lim_{n \to +\infty} \chi_{\{\bigcup_{p \le n} A_p\}}.$$

● If $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ are two sequences of subsets of *X*, then

$$(\bigcup_{n=1}^{+\infty} A_n) \Delta(\bigcup_{n=1}^{+\infty} B_n) \subset \bigcup_{n=1}^{+\infty} (A_n \Delta B_n).$$

Definition

• Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of real functions on X. We define

$$(\limsup_{n \to +\infty} f_n = \varlimsup_{n \to +\infty} f_n = \inf_n \sup \{f_m; m \ge n\}$$

and

$$(\liminf_{n \to +\infty} f_n = \underline{\lim}_{n \to +\infty} f_n = \sup_n \inf \{f_m; m \ge n\}.$$

These two limits are always exist and can take the values $\pm\infty$.

Definition

② Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of subsets of *X*. We define

$$\overline{\lim}_{n\to+\infty}A_n = \bigcap_{n=1}^{+\infty}\bigcup_{m=n}^{+\infty}A_m \text{ and } \underline{\lim}_{n\to+\infty}A_n = \bigcup_{n=1}^{+\infty}\bigcap_{m=n}^{+\infty}A_m.$$

 $\overline{\lim}_{n \to +\infty} A_n \text{ (or } \limsup_{\substack{n \to +\infty \\ n \to +\infty}} A_n \text{ (or } \liminf_{\substack{n \to +\infty \\ n \to +\infty}} A_n \text{ (or } \liminf_{\substack{n \to +\infty \\ n \to +\infty}} A_n \text{) is called the limit inferior.}$

Definition

 $+\infty$ Note that $(\bigcup A_m)_n$ is a decreasing sequence of subsets of X m=nand t follows that $\lim_{n \to +\infty} \bigcup_{m=n}^{+\infty} A_m = \bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m$ exists. $+\infty$ Similarly $(\bigcap_{m=1}^{\infty} A_m)_n$ is an increasing sequence of subsets of X $m \equiv n$ and this implies that $\lim_{n \to +\infty} \bigcap_{m=n}^{+\infty} A_m = \bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_m$ exists. The interpretation is that $\limsup_{n} A_n$ contains those elements of X that occur "infinitely often" in the sets A_n , and $\liminf_{n \to \infty} A_n$ contains those elements that occur in all except finitely many of the sets A_n .

Remarks

- If the sequence $(f_n)_{n \in \mathbb{N}}$ converges to the function f; then $\overline{\lim}_{n \to +\infty} f_n = \underline{\lim}_{n \to +\infty} f_n = f$.
- **2** $\overline{\lim}_{n\to+\infty}A_n$ is the set of the elements of X which are in an infinite sets of A_n . Thus

$$\overline{\lim}_{n\to+\infty}A_n = \{x \in X : \sum_{n=1}^{\infty} \chi_{A_n}(x) = +\infty\}.$$

● $\lim_{n\to+\infty} A_n$ is the set of elements of X which are in all the A_n except a finite number and thus

$$\underline{\lim}_{n\to+\infty}A_n=\{x\in X:\sum_{n=1}^{\infty}\chi_{A_n^c}(x)<+\infty\}.$$

Example

Let $X = \mathbb{R}$ and let a sequence $(A_n)_n$ of subsets of \mathbb{R} be defined by $A_{2n+1} = [0, \frac{1}{2n+1}]$, and $A_{2n} = [0, 2n]$. Then $\underline{\lim}_{n \to +\infty} A_n = \{x \in X; x \in A_n \text{ for all but finitely many } n \in \mathbb{N}\} = \{0\}$ and

$$\overline{\lim}_{n\to+\infty}A_n=\{x\in X;\ x\in A_n\text{for infinitely many }n\in\mathbb{N}\}=[0,\infty[.$$

Algebras and σ -Algebras

General Properties of σ -Algebras

Definition

Let \mathscr{A} be a collection of subsets of X. \mathscr{A} is called an algebra or a field if

- $X \in \mathscr{A};$
- **2** (Closure under complement) if $A \in \mathscr{A}$, then $A^c \in \mathscr{A}$;
- (Closure under finite intersection) if $A_1, \ldots, A_n \in \mathscr{A}$, then $\bigcap_{j=1}^n A_j \in \mathscr{A}$. \mathscr{A} is called a σ -algebra or a σ -field if in addition
- (Closure under countable intersection) if $(A_j)_{j \in \mathbb{N}}$ are in *A*, then $\bigcap_{i=1}^{+\infty} A_i \in A$.

If \mathscr{A} is a σ -algebra, the pair (X, \mathscr{A}) is called a **measurable space**, and the subsets in \mathscr{A} are called the measurable sets.

Remarks

By complementarity

- **1** If \mathscr{A} is an algebra, then $\emptyset \in \mathscr{A}$.
- (Closure under finite union) If \mathscr{A} is an algebra and $A_1, \ldots, A_n \in \mathscr{A}$, then $\bigcup_{j=1}^n A_j \in \mathscr{A}$.
- Solution (Closure under countable union) If 𝔄 is a σ -algebra and $(A_j)_{j \in \mathbb{N}}$ in 𝔄, then $\bigcup_{j=1}^{+\infty} A_j \in 𝔄$.

Example

 $\mathscr{A} = \{\emptyset, X\}$ is an algebra and a σ -algebra. This is the smallest σ -algebra in $\mathscr{P}(X)$.

Example

 $\mathscr{A} = \mathscr{P}(X)$ is an algebra and a σ -algebra. This is the largest σ -algebra in $\mathscr{P}(X)$.

Example

Let
$$\mathscr{F}=\{A,B,C\}$$
 be a partition of X . The set

$$\mathscr{A} = \{\emptyset, X, A, B, C, A \cup B = C^c, A \cup C = B^c, B \cup C = A^c\}.$$

is a σ -algebra.

Example

- Let X = ℝ and A the collection of subsets A of X such that either A or A^c is countable or Ø. A is a σ-algebra. In fact let (A_j)_{j∈ℕ} be a sequence of elements of A. If there exists p such that A_p is countable, then ∩^{+∞}_{j=1}A_j ⊂ A_p is countable and ∩^{+∞}_{j=1}A_j ∈ A. If every A_j is not countable, then all A^c_k are countable, and then ∪^{+∞}_{j=1}A^c_j is a countable subset of ℝ and then ∩^{+∞}_{j=1}A_j ∈ A.
- 2 Let X be an infinite set and let A the collection of subsets A of X such that either A or A^c is finite, then A is an algebra but it is not a σ-algebra.

σ -Algebra Generated by a Subset $P \subset \mathscr{P}(X)$

Theorem

Any intersection of algebras (resp $\sigma-$ algebra) is an algebra (resp $\sigma-$ algebra).

Example

Definition

Let X be a non empty set and $\mathcal{B} \subset \mathscr{P}(X)$. There exists a smallest algebra (resp σ -algebra) denoted by $\mathcal{A}(\mathcal{B})$, (resp $\sigma(\mathcal{B})$) that contains \mathcal{B} . This algebra (resp σ -algebra) is called the algebra (resp σ -algebra) generated by \mathcal{B} . $\mathcal{A}(\mathcal{B})$ (resp $\sigma(\mathcal{B})$) is the intersection of all algebras on X (resp σ -algebra) containing \mathcal{B} . So this is the smallest algebra (resp σ -algebra) which contains \mathcal{B} .

Example

Let A be a subset of X with $A \neq \emptyset$ and $A \neq X$. The σ -algebra generated by $\{A\}$ is $\{\emptyset, X, A, A^c\}$.

Let X be an arbitrary nonempty set, and let \mathscr{A} be the family of all subsets $A \subset X$ such that either A or $X \setminus A$ is countable. Show that \mathscr{A} is the σ -algebra generated by the singleton sets $S = \{\{x\}; x \in X\}$.

Example Borelian σ -Algebra in \mathbb{R}

If $X = \mathbb{R}$ and \mathscr{B} is the σ -algebra generated by the family $\{[a, b]; (a, b) \in \mathbb{R}^2\}$. This σ -algebra is denoted by $\mathscr{B}_{\mathbb{R}}$ and called the Borel σ -algebra on \mathbb{R} . ($\mathscr{B}_{\mathbb{R}}$ contains all open and closed subsets of \mathbb{R} .) Every element of $\mathscr{B}_{\mathbb{R}}$ is called a Borel subset of \mathbb{R} . We can prove easily that $\mathscr{B}_{\mathbb{R}}$ is generated by $\{[a, b]; (a, b) \in \mathbb{R}^2\}$, $\mathscr{B}_{\mathbb{R}}$ is generated by the family of open subsets in \mathbb{R} , $\mathscr{B}_{\mathbb{R}}$ is generated by the family of closed subsets in \mathbb{R} , $\mathscr{B}_{\mathbb{R}}$ is generated by $\{]a, +\infty[; a \in \mathbb{R}\}, \mathscr{B}_{\mathbb{R}}$ is generated by $\{]-\infty, a]; a \in \mathbb{R}\}$,

Example Borelian σ -Algebra in a Topological Space

Let X be a topological space and \mathcal{A} be the family of the open subsets of X. Let \mathscr{B}_X be the σ -algebra generated by the family \mathcal{A} . Then \mathscr{B}_X is called the Borel σ -algebra on X. All open and closed subsets of X are Borel subsets.

The family of the closed subsets of X generates \mathscr{B}_X .

Example Product of σ -Algebras

Definition

Let (X_1, \mathscr{A}_1) and (X_2, \mathscr{A}_2) be two measurable spaces. We denote by X the cartesian product $X_1 \times X_2$. A subset $R = A_1 \times A_2$ of $X_1 \times X_2$ is called a rectangle with $A_1 \in \mathscr{A}_1$ and $A_2 \in \mathscr{A}_2$. We denote by \mathcal{R} the set of all rectangles in X. The product σ -algebra of \mathscr{A}_1 and \mathscr{A}_2 on X is the σ -algebra generated by \mathcal{R} and will be denoted by $\mathscr{A}_1 \otimes \mathscr{A}_2$.

Remark

In the same way if (X_j, \mathscr{A}_j) , j = 1, ..., n are *n* measurable spaces, we define the σ -algebra $\bigotimes_{j=1}^n \mathscr{A}_j$ on the space $X = \prod_{j=1}^n X_j$, and for the remainder of this course, we provide the product space X with this σ -algebra.

Example Pull back of a σ -Algebra

> Let X and X' two non empty sets, and let $f: X \longrightarrow X'$ a mapping. Let \mathscr{B} be a family of subsets of X'. We define

$$f^{-1}(\mathscr{B}) = \{f^{-1}(A); A \in \mathscr{B}\}$$

Proposition

If \mathscr{B} is a σ -algebra on X', then $f^{-1}(\mathscr{B})$ is a σ -algebra on X called the pull back of \mathscr{B} under f.

Proof

We have
$$f^{-1}(X') = X$$
 and $\bigcup_j f^{-1}(A_j) = f^{-1}(\bigcup_j A_j)$ and $(f^{-1}(A))^c = f^{-1}(A'^c)$.

If X is a subset of X' and $f: X \longrightarrow X'$ is an injection, then the pull back of a σ -algebra on X' is called the **trace** of this σ -algebra on X.

Proposition

Let X and X' be two non empty sets and $f: X \longrightarrow X'$ a mapping. Let \mathcal{B} be a family of subsets of X' and $\mathscr{B} = \sigma(\mathcal{B})$ the σ -algebra generated by \mathcal{B} . Then $f^{-1}(\mathscr{B})$ is the σ -algebra generated by $f^{-1}(\mathcal{B})$. In other words $f^{-1}(\sigma(\mathcal{B})) = \sigma(f^{-1}(\mathcal{B}))$.

Proof

Since $f^{-1}(\mathcal{B}) \subset f^{-1}(\sigma(\mathcal{B}))$, then $\sigma(f^{-1}(\mathcal{B})) \subset f^{-1}(\sigma(\mathcal{B})) = f^{-1}(\mathscr{B})$. We shall prove the reverse inclusion in the particular case when f is surjective (onto).

Let \mathscr{A} be a σ -algebra on X such that $f^{-1}(\mathscr{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. Let $\mathscr{B}_1 = f(\mathscr{A}) = \{f(A); A \in \mathscr{A}\}$. The family \mathscr{B}_1 is closed under countable union and since f is surjective (onto) and $X \in \mathscr{A}$, then $X' \in \mathscr{B}_1$.

Let proving now that \mathscr{B}_1 is closed under complementarity.

For $K \in \mathcal{B}_1$, there exists $H \in \mathscr{A}$ such that K = f(H). Since $H \in f^{-1}(\mathscr{B})$, there exists $L \in \mathscr{B}$ such that $H = f^{-1}(L)$. Thus $K = f(f^{-1}(L))$ with $L \in \mathscr{B}$. We deduce that $K^c = f(f^{-1}(L^c))$ and since $f^{-1}(L^c) = (f^{-1}(L))^c = H^c \in \mathscr{A}$, we conclude that $K^c = f(Z)$, with $Z = H^c \in \mathscr{A}$. It results that \mathscr{B}_1 is a σ -algebra. So $\mathcal{B} \subset \mathscr{B}_1 \subset \mathscr{B}$, and since \mathscr{B} is the σ -algebra generated by \mathcal{B} , we deduce that $\mathscr{B}_1 = \mathscr{B}$. (Let $Y \in \mathscr{B}$ then $Y \in \mathscr{B}_1$, there exists thus $Z \in \mathscr{A}$ such that $Z = f^{-1}(Y) \Rightarrow f^{-1}(Y) \in \mathscr{A}$, for any $Y \in \mathscr{B}$ where $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.) Assume now that f is injective.

We can identify X as a subset of X' and f is the canonical injection of X to X'. Let \mathscr{A} be a σ -algebra such that $f^{-1}(\mathcal{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. We set

$$\mathscr{B}_1 = \{ C \in \mathscr{P}(X'); C \cap X \in \mathscr{A} \}.$$

 \mathscr{B}_1 is a σ -algebra and contains \mathcal{B} . So $\mathscr{B}_1 \supset \mathscr{B}$. Thus $f^{-1}(\mathscr{B}_1) \supset f^{-1}(\mathscr{B})$. The result is deduced easily.

In the general case we set Y = f(X). Let $f_1: X \longrightarrow Y$ be the mapping defined by f. Let f_2 be the canonical injection of Y into X'. $f = f_2 \circ f_1$ with f_1 surjective (onto) and f_2 injective. Let $A = f^{-1}(\mathcal{B})$ and $\mathscr{A} = f^{-1}(\mathscr{B})$. Thus $\mathscr{A} = f_1^{-1}(f_2^{-1}(\mathscr{B}))$. From the previous result, $\sigma(f^{-1}(\mathcal{B})) = f_2^{-1}(\mathscr{B})$ is a σ -algebra generated by $f_2^{-1}(\mathcal{B})$ and $f_1^{-1}(\sigma(f^{-1}(\mathcal{B})))$ is generated by $f_1^{-1}(f_2^{-1}(\mathcal{B}))$.

Monotone Class and σ -Algebra

Definition

A collection of sets \mathcal{M} is called a **monotone class** if for any monotone sequence $(A_n)_n$ of \mathcal{M} ; $\lim_{n \to +\infty} A_n \in \mathcal{M}$.

Remarks

- **1** Any σ -algebra is a monotone class.
- An arbitrary intersection of monotone classes is a monotone class.
- If A ⊂ X, the intersection of all monotone classes that contain A is called the monotone class generated by A and denoted by *M*(A).

Theorem

Let \mathcal{A} be an algebra of X. Then $\mathscr{M}(\mathcal{A}) = \sigma(\mathcal{A})$. ($\mathscr{M}(\mathcal{A})$) is the monotone class generated by \mathcal{A} and by $\sigma(\mathcal{A})$ is the σ -algebra generated by \mathcal{A} .)

Proof

It follows from the above remark that $\sigma(\mathcal{A})$ is a monotone class, as $\sigma(\mathcal{A})$ contains \mathcal{A} , then $\sigma(\mathcal{A})$ contains the smallest monotone class containing \mathcal{A} thus $\sigma(\mathcal{A}) \supset \mathscr{M}(\mathcal{A})$. To prove $\sigma(\mathcal{A}) \subset \mathscr{M}(\mathcal{A})$, we define for every subset S of X the set \tilde{S} by

$$ilde{S} = \{ T \in \mathscr{P}(X); \; S \cup T, S \setminus T \; ext{and} \; T \setminus S \in \mathscr{M}(\mathcal{A}) \}.$$

This definition is symmetric with respect to S and T, then $S \in \tilde{T} \iff T \in \tilde{S}$. We intend to prove that \tilde{S} is a monotone class if it exists.

If $(A_n)_n$ is an increasing sequence of \tilde{S} ; $(S \cup A_n)_n$ is a increasing sequence of $\mathscr{M}(\mathcal{A})$, the same for the sequence $(A_n \setminus S)_n$, the sequence $(S \setminus A_n)_n$ is a decreasing sequence of $\mathscr{M}(\mathcal{A})$. Then the limits of the sequences are in $\mathscr{M}(\mathcal{A})$. Hence \tilde{S} is a monotone class.

Since for all $A, B \in \mathcal{A}, B \in \tilde{A}$, then \tilde{A} is a monotone class containing \mathcal{A} and $\tilde{A} \supset \mathscr{M}(\mathcal{A})$. So $\forall S \in \mathscr{M}(\mathcal{A}), S \in \tilde{A}$ for any $A \in \mathcal{A}$, and so $A \in \tilde{S}$, then $\mathcal{A} \subset \tilde{S}$; $\forall S \in \mathscr{M}(\mathcal{A})$. As \tilde{S} is a monotone class then $\mathscr{M}(\mathcal{A}) \subset \tilde{S}$.

We prove then $\forall S, S' \in \mathscr{M}(\mathcal{A}), S \setminus S', S' \setminus S, S \cup S' \in \mathscr{M}(\mathcal{A}).$ If we take S' = X, we find that $S^c \in \mathscr{M}(\mathcal{A})$, so $\mathscr{M}(\mathcal{A})$ is an algebra. Let now $(A_n)_n$ a sequence of \mathscr{M} . Consider $B_n = \bigcup_{\substack{1 \leq j \leq n \\ n = 1}} A_j$, the sequence $(B_n)_n$ is increasing in \mathscr{M} and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathscr{M}$.