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Elementarily Operations on Sets

In what follows, X is a nonempty set. We denote by P(X ) the col-
lection of subsets of X , (P(X ) called also the power set, P(X ) =
{A : A ⊂ X}. If A and B are in P(X ), we put A \ B := {x ∈
A and x /∈ B} = A∩Bc . A∆B = (A\B)

⋃
(B \A) called symmetric

difference of B from A, and if A = X , X \ B = Bc
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Definition

[Characteristic functions of sets]
For any subset A ∈ P(X ), we define the characteristic function χA

(or the indicator function) of A by χA(x) = 1; ∀ x ∈ A and
χA(x) = 0; ∀ x /∈ A.
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Properties

All the operations on sets can be translated easily in term of
characteristic functions of sets by the correspondence: A −→ χA

when A ∈ P(X ). We have the following relations:

1 A ⊂ B ⇐⇒ χA ≤ χB .

2 χA∩B = χA.χB .

3 χAc = 1− χA.

4 χA∪B = χA + χB − χA.χB .

5 χA\B = χA(1− χB).

6 χA∆B =| χA − χB | .
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Properties

7 If (An)n∈N is a sequence of subsets of X , then

χ⋂
n An

= inf
n

χ{
⋂
p≤n Ap}

= lim
n→+∞

n∏
k=1

χAk
.

χ⋃
n An

= sup
n

χ{
⋃
p≤n Ap}

= lim
n→+∞

χ{
⋃
p≤n Ap}

.

8 If (An)n∈N and (Bn)n∈N are two sequences of subsets of X ,
then

(+∞⋃
n=1

An

)
∆
(+∞⋃
n=1

Bn

)
⊂

+∞⋃
n=1

(
An∆Bn

)
.
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Definition

1 Let (fn)n∈N be a sequence of real functions on X . We define

(lim sup)n→+∞ fn = limn→+∞fn = inf
n

sup {fm;m ≥ n}

and

(lim inf)n→+∞ fn = limn→+∞fn = sup
n

inf {fm;m ≥ n}.

These two limits are always exist and can take the values ±∞.

Mongi BLEL Set Theory



Elementarily Operations on Sets
Algebras and σ-Algebras

Monotone Class and σ−Algebra

Definition

2 Let (An)n∈N be a sequence of subsets of X . We define

limn→+∞An =
+∞⋂
n=1

+∞⋃
m=n

Am and limn→+∞An =
+∞⋃
n=1

+∞⋂
m=n

Am.

limn→+∞An (or lim sup
n→+∞

An) is called the limit superior and

limn→+∞An (or lim inf
n→+∞

An) is called the limit inferior.
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Definition

Note that (
+∞⋃
m=n

Am)n is a decreasing sequence of subsets of X

and t follows that lim
n→+∞

+∞⋃
m=n

Am =
+∞⋂
n=1

+∞⋃
m=n

Am exists.

Similarly (
+∞⋂
m=n

Am)n is an increasing sequence of subsets of X

and this implies that lim
n→+∞

+∞⋂
m=n

Am =
+∞⋃
n=1

+∞⋂
m=n

Am exists.

The interpretation is that lim supn An contains those elements
of X that occur ”infinitely often” in the sets An, and
lim infn An contains those elements that occur in all except
finitely many of the sets An.
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Remarks

1 If the sequence (fn)n∈N converges to the function f ; then
limn→+∞fn = limn→+∞fn = f .

2 limn→+∞An is the set of the elements of X which are in an
infinite sets of An. Thus

limn→+∞An = {x ∈ X :
∞∑
n=1

χAn(x) = +∞}.
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3 limn→+∞An is the set of elements of X which are in all the
An except a finite number and thus

limn→+∞An = {x ∈ X :
∞∑
n=1

χAc
n
(x) < +∞}.

4 limn→+∞An ⊂ limn→+∞An.

5 χ
limn→+∞An

= limn→+∞χAn .

6 χlimn→+∞An
= limn→+∞χAn .
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Example

Let X = R and let a sequence (An)n of subsets of R be defined by
A2n+1 = [0, 1

2n+1 ], and A2n = [0, 2n]. Then

limn→+∞An = {x ∈ X ; x ∈ Anfor all but finitely many n ∈ N} = {0}

and

limn→+∞An = {x ∈ X ; x ∈ Anfor infinitely many n ∈ N} = [0,∞[.
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Algebras and σ-Algebras

General Properties of σ−Algebras

Definition

Let A be a collection of subsets of X . A is called an algebra or a
field if

1 X ∈ A ;

2 (Closure under complement) if A ∈ A , then Ac ∈ A ;

3 (Closure under finite intersection) if A1, . . . ,An ∈ A , then⋂n
j=1 Aj ∈ A .

A is called a σ−algebra or a σ−field if in addition

4 (Closure under countable intersection) if (Aj)j∈N are in A ,
then

⋂+∞
j=1 Aj ∈ A.

If A is a σ−algebra, the pair (X ,A ) is called a measurable
space, and the subsets in A are called the measurable sets.
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Remarks

By complementarity

1 If A is an algebra, then ∅ ∈ A .

2 (Closure under finite union) If A is an algebra and

A1, . . . ,An ∈ A ,, then
n⋃

j=1

Aj ∈ A .

3 (Closure under countable union) If A is a σ−algebra and

(Aj)j∈N in A , then
+∞⋃
j=1

Aj ∈ A .
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Example

A = {∅,X} is an algebra and a σ−algebra. This is the smallest
σ−algebra in P(X ).
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Example

A = P(X ) is an algebra and a σ−algebra. This is the largest
σ−algebra in P(X ).
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Example

Let F = {A,B,C} be a partition of X . The set

A = {∅,X ,A,B,C ,A ∪ B = C c ,A ∪ C = Bc ,B ∪ C = Ac}.

is a σ−algebra.
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Example

1 Let X = R and A the collection of subsets A of X such that
either A or Ac is countable or ∅. A is a σ−algebra. In fact let
(Aj)j∈N be a sequence of elements of A .
If there exists p such that Ap is countable, then ∩+∞

j=1Aj ⊂ Ap

is countable and ∩+∞
j=1Aj ∈ A .

If every Aj is not countable, then all Ac
k are countable, and

then ∪+∞
j=1A

c
j is a countable subset of R and then

∩+∞
j=1Aj ∈ A .

2 Let X be an infinite set and let A the collection of subsets A
of X such that either A or Ac is finite, then A is an algebra
but it is not a σ-algebra.
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σ−Algebra Generated by a Subset P ⊂ P(X )

Theorem

Any intersection of algebras (resp σ− algebra) is an algebra (resp
σ− algebra).
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Example

Definition

Let X be a non empty set and B ⊂ P(X ). There exists a smallest
algebra (resp σ−algebra) denoted by A(B), (resp σ(B)) that
contains B. This algebra (resp σ−algebra) is called the algebra
(resp σ−algebra) generated by B.
A(B) (resp σ(B)) is the intersection of all algebras on X (resp
σ−algebra) containing B. So this is the smallest algebra (resp
σ−algebra) which contains B.
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Example

Let A be a subset of X with A ̸= ∅ and A ̸= X . The σ−algebra
generated by {A} is {∅,X ,A,Ac}.
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Exercise

Let X be an arbitrary nonempty set, and let A be the family of all
subsets A ⊂ X such that either A or X \A is countable. Show that A
is the σ-algebra generated by the singleton sets S = {{x}; x ∈ X}.
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Example
Borelian σ−Algebra in R

If X = R and B is the σ−algebra generated by the family {[a, b[; (a, b) ∈
R2}. This σ−algebra is denoted by BR and called the Borel σ−algebra
on R. (BR contains all open and closed subsets of R.) Every ele-
ment of BR is called a Borel subset of R.
We can prove easily that
BR is generated by {[a, b[; (a, b) ∈ R2},
BR is generated by the family of open subsets in R,
BR is generated by the family of closed subsets in R,
BR is generated by {]a,+∞[; a ∈ R},
BR is generated by {]−∞, a]; a ∈ R},
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Example
Borelian σ−Algebra in a Topological Space

Let X be a topological space and A be the family of the open subsets
of X . Let BX be the σ−algebra generated by the family A. Then
BX is called the Borel σ−algebra on X . All open and closed subsets
of X are Borel subsets.
The family of the closed subsets of X generates BX .
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Example
Product of σ−Algebras

Definition

Let (X1,A1) and (X2,A2) be two measurable spaces. We denote
by X the cartesian product X1 × X2. A subset R = A1 × A2 of
X1 × X2 is called a rectangle with A1 ∈ A1 and A2 ∈ A2. We
denote by R the set of all rectangles in X . The product σ−algebra
of A1 and A2 on X is the σ−algebra generated by R and will be
denoted by A1 ⊗ A2.
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Remark

In the same way if (Xj ,Aj), j = 1, . . . , n are n measurable spaces,

we define the σ−algebra ⊗n
j=1Aj on the space X =

n∏
j=1

Xj , and for

the remainder of this course, we provide the product space X with
this σ−algebra.
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Example
Pull back of a σ−Algebra

Let X and X ′ two non empty sets, and let f : X −→ X ′ a mapping.
Let B be a family of subsets of X ′. We define

f −1(B) = {f −1(A); A ∈ B}
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Proposition

If B is a σ−algebra on X ′, then f −1(B) is a σ−algebra on X
called the pull back of B under f .
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Proof

We have f −1(X ′) = X and
⋃

j f
−1(Aj) = f −1(

⋃
j Aj) and (f

−1(A))c =

f −1(A′c).
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If X is a subset of X ′ and f : X −→ X ′ is an injection, then the pull
back of a σ−algebra on X ′ is called the trace of this σ−algebra on
X .
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Proposition

Let X and X ′ be two non empty sets and f : X −→ X ′ a mapping.
Let B be a family of subsets of X ′ and B = σ(B) the σ−algebra
generated by B. Then f −1(B) is the σ−algebra generated by
f −1(B). In other words f −1(σ(B)) = σ(f −1(B)).
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Proof

Since f −1(B) ⊂ f −1(σ(B)), then σ(f −1(B)) ⊂ f −1(σ(B)) = f −1(B).
We shall prove the reverse inclusion in the particular case when f is
surjective (onto).
Let A be a σ−algebra on X such that f −1(B) ⊂ A ⊂ f −1(B).
Let B1 = f (A ) = {f (A);A ∈ A }. The family B1 is closed under
countable union and since f is surjective (onto) and X ∈ A , then
X ′ ∈ B1.
Let proving now that B1 is closed under complementarity.
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For K ∈ B1, there exists H ∈ A such that K = f (H). Since
H ∈ f −1(B), there exists L ∈ B such that H = f −1(L). Thus
K = f (f −1(L)) with L ∈ B. We deduce that K c = f (f −1(Lc))
and since f −1(Lc) = (f −1(L))c = Hc ∈ A , we conclude that
K c = f (Z ), with Z = Hc ∈ A .
It results that B1 is a σ−algebra. So B ⊂ B1 ⊂ B, and since B is
the σ−algebra generated by B, we deduce that B1 = B.
(Let Y ∈ B then Y ∈ B1, there exists thus Z ∈ A such that
Z = f −1(Y ) ⇒ f −1(Y ) ∈ A , for any Y ∈ B where f −1(B) ⊂ A .)
Assume now that f is injective.
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We can identify X as a subset of X ′ and f is the canonical injection of
X to X ′. Let A be a σ−algebra such that f −1(B) ⊂ A ⊂ f −1(B).
We set

B1 = {C ∈ P(X ′);C ∩ X ∈ A }.

B1 is a σ−algebra and contains B. So B1 ⊃ B. Thus f −1(B1) ⊃
f −1(B). The result is deduced easily.
In the general case we set Y = f (X ). Let f1 : X −→ Y be the map-
ping defined by f . Let f2 be the canonical injection of Y into X ′.
f = f2◦ f1 with f1 surjective (onto) and f2 injective. Let A = f −1(B)
and A = f −1(B). Thus A = f −1

1 (f −1
2 (B)).

From the previous result, σ(f −1(B)) = f −1
2 (B) is a σ−algebra gen-

erated by f −1
2 (B) and f −1

1 (σ(f −1(B))) is generated by f −1
1 (f −1

2 (B)).
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Monotone Class and σ−Algebra

Definition

A collection of sets M is called a monotone class if for any
monotone sequence (An)n of M; lim

n→+∞
An ∈ M.
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Remarks

1 Any σ−algebra is a monotone class.

2 An arbitrary intersection of monotone classes is a monotone
class.

3 If A ⊂ X , the intersection of all monotone classes that contain
A is called the monotone class generated by A and denoted by
M (A).
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Theorem

Let A be an algebra of X . Then M (A) = σ(A). (M (A ) is the
monotone class generated by A and by σ(A) is the σ−algebra
generated by A.)
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Proof

It follows from the above remark that σ(A) is a monotone class, as
σ(A) contains A, then σ(A) contains the smallest monotone class
containing A thus σ(A) ⊃ M (A).
To prove σ(A) ⊂ M (A), we define for every subset S of X the set
S̃ by

S̃ = {T ∈ P(X ); S ∪ T , S \ T and T \ S ∈ M (A)}.
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This definition is symmetric with respect to S and T , then S ∈
T̃ ⇐⇒ T ∈ S̃ . We intend to prove that S̃ is a monotone class if
it exists.
If (An)n is an increasing sequence of S̃ ; (S ∪An)n is a increasing se-
quence of M (A), the same for the sequence (An\S)n, the sequence
(S \An)n is a decreasing sequence of M (A). Then the limits of the
sequences are in M (A). Hence S̃ is a monotone class.
Since for all A,B ∈ A, B ∈ Ã, then Ã is a monotone class containing
A and Ã ⊃ M (A). So ∀ S ∈ M (A), S ∈ Ã for any A ∈ A, and so
A ∈ S̃ , then A ⊂ S̃ ; ∀S ∈ M (A). As S̃ is a monotone class then
M (A) ⊂ S̃ .
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We prove then
∀ S ,S ′ ∈ M (A), S \S ′, S ′ \S , S ∪S ′ ∈ M (A). If we take S ′ = X ,
we find that Sc ∈ M (A), so M (A) is an algebra.

Let now (An)n a sequence of M . Consider Bn =
⋃

1≤j≤n

Aj , the

sequence (Bn)n is increasing in M and ∪∞
n=1An = ∪∞

n=1Bn ∈ M .
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