

Water

Learning goals:

To answer the following questions?

- What kind of interactions occur between molecules?
- Why water is a good medium for life?
- Why nonpolar moieties aggregate in water?
- How dissolved molecules alter properties of water?
- How weak acids and bases behave in water?
- How buffers work and why we need them?
- How water participates in biochemical reactions?

The Solvent of Life

- We are ~ 70% Water
- H_2O is key to the behavior of macromolecules.
 - All life transformations occur in aqueous media
 - Most biochemical reactions take place in water
 - Water is a reactant in a number of reactions, usually in the form of H⁺ and OH⁻.
- Even water insoluble compounds such as lipid membranes derive their structure and function by interaction with H₂O
 - Biomolecules assume their shapes in response to the aqueous medium.

Structure of Water

- The difference between O and H in electronegativity creates polar bonds
 - -OH is a very polar bond
 - H₂O can donate and accept hydrogen bonds
 - H₂O can function as an acid or a base
- Structure: water is a bent molecule (geometry & polarity)

Geometry Determines Polarity

While both bonds O-H and C-O are polar, the sum of vectors in CO_2 is zero, and therefore, CO_2 is nonpolar molecule while H₂O is polar molecule

Hydrogen Bonding in Water

- Partial charges cause electrostatic attractions between O and H
- Each H_2O can bind 4 other H_2O 's.
- H-bonding among its molecules gives water:
 - a) high boiling point
 - b) high surface tension or capillary action
 - d) expansion upon freezing
 - e) solvent for polar molecules

Structure of the water molecule.

Two H_2O molecules joined by a hydrogen bond (designated by three blue lines) between the oxygen atom of the upper molecule and a hydrogen atom of the lower one.

Hydrogen bonds are longer and weaker than covalent O—H bonds

Ice: Water in a Solid State

- Water has many different crystal forms; the hexagonal ice is the most common.
- Hexagonal ice forms an organized lattice and thus has a low entropy.
- Hexagonal ice contains maximal hydrogen bonds/ water molecules, forcing the water molecules into <u>equidistant arrangement</u>. Thus:
 - ice has lower density than liquid water
 - ice floats

Water: Ice, Liquid, and Vapor

- In ice, each water molecule forms four hydrogen bonds, the maximum possible for a water molecule, creating a regular crystal lattice.
- By contrast, in liquid water at room temperature and atmospheric pressure, each water molecule hydrogenbonds with an average of 3.4 other water molecules.
- This crystal lattice structure makes ice less dense than liquid water, and thus ice floats on liquid water.

Water as a Solvent

- Water is a good solvent for charged and polar substances:
 - amino acids and peptides
 - small alcohols
 - carbohydrates
- Water is a poor solvent for nonpolar substances:
 - nonpolar gases
 - aromatic moieties
 - aliphatic chains

Water as a solvent: H-bonding

- Based on their interaction with H₂O, Molecules are divided into two types:
- Hydrophobic molecules: do not interact with H₂O
- Hydrophilic molecules: able to interact with H₂O via polar functional groups or charged groups

Which chemical groups are hydrophilic????

- All charged groups are hydrophilic
- Uncharged polar molecules have functional groups that form H-bonds with H₂O.
- Examples: Alcohols, amines, carbonyls (aldehydes & ketones)

Water As a Solvent: Ionic Interactions

- Water can solvate charged molecules (both cations & anions)
 - Water projects its partially positive hydrogens towards negatively charged ions.
- Water projects its partially negative oxygen towards positively charged ions
 - Notice the opposite orientation of water molecules around a cation versus anion.
 - This type of interaction is called ion– dipole interactions.

Table 2-2

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Osmotic Pressure

- Water moves from areas of high water concentration (low solute concentration) to areas of low water concentration (high solute concentration).
- Osmotic pressure (π) is the force necessary to resist the movement.
- Osmotic pressure is influenced by the concentration of each solute in solution.
- Dissociated components of a solute individually influence the osmotic pressure.

Osmotic Pressure

Effect of Osmotic Pressure on Cells

Ionization of Water

$H_2O \rightleftharpoons H^+ + OH^-$

- O-H bonds are polar and can dissociate heterolytically.
- Products are a proton (H⁺) and a hydroxide ion (OH⁻).
- Dissociation of water is a rapid reversible process.
- Most water molecules remain un-ionized, thus pure water has very low electrical conductivity (resistance: 18 MΩ•cm).
- The equilibrium is strongly to the left (low K_{eq}).
- The extent of dissociation depends on the temperature.

Ionization of Water

Concentrations of participating species in an equilibrium process are not independent but are related via the equilibrium constant:

$$H_2O \rightleftharpoons H^+ + OH^ K_{eq} = \frac{[H^+] \cdot [OH^-]}{[H_2O]}$$

 K_{eq} can be determined experimentally, it is $1.8 \cdot 10^{-16}$ M at 25° C. $[H_2O]$ can be determined from water density, it is 55.5 M.

• Ionic product of water:

$$K_w = K_{eq} \cdot [H_2O] = [H^+][OH^-] = 1 \cdot 10^{-14} M^2$$

• In pure water, $[H^+] = [OH^-] = 10^{-7} \text{ M}.$

Ionization of Water: pH Scale

Bronsted-Lowry Acids

 $HA + H_2O \iff H_3O^+ + A^-$

- An acid is a substance that can donate a proton
- A base is a substance that can accept a proton
- In the above equation, HA is the acid and H_2O is the base
- $-A^{-}$ is the conjugate base of HA, and $H_{3}O^{+}$ is the conjugate acid of $H_{2}O$

 $CH_{3}COOH \longleftrightarrow H^{+} + CH_{3}COO^{-}$ Acid Conjugate base

Proton Hydration

- Protons do not exist free in solution.
- They are immediately hydrated to form hydronium ions (H_3O^+) . $[H^+][OH^-]$

$$K_{\rm eq} = \frac{[\rm H^+][\rm OH^-]}{[\rm H_2O]}$$

- A hydronium ion is a water molecule with a proton associated with one of the nonbonding electron pairs.
- Hydronium ions are solvated by nearby water molecules.
- The covalent and hydrogen bonds are interchangeable. This allows for an extremely fast mobility of protons in water via "proton hopping."

Proton Hopping

Hydronium ion gives up a proton.

What Is pH?

 $K_w = [H^+][OH^-] = 1 \cdot 10^{-14} M^2$ • The pH and pOH must always

$$-\log[H^+] - \log[OH^-] = +14$$

pH+pOH=14

- pH is defined as the negative logarithm of the hydrogen ion concentration.
- Simplifies equations
- add up to 14.
- In neutral solution, [H⁺] = [OH⁻] and the pH is 7.
- pH can be negative $([H^+] = 6$ M).

[H ⁺] (M)	pН	[OH ⁻] (M)	pOH ^a
$10^{0}(1)$	0	10-14	14
10-1	1	10-13	13
10-2	2	10-12	12
10-3	3	10-11	11
10-4	4	10-10	10
10-5	5	10-9	9
10-6	6	10-8	8
10-7	7	10-7	7
10-8	8	10-6	6
10-9	9	10-5	5
10-10	10	10-4	4
10-11	11	10-3	3
10-12	12	10-2	2
10-13	13	10-1	1
10-14	14	$10^{0}(1)$	0

Dissociation of Weak Electrolytes: Principle

$$H_3C \longrightarrow O + H_2O \xrightarrow{K_{eq}} H_3C \longrightarrow O + H_3O^+$$

$$K_a = \frac{[\mathrm{H}^+][\mathrm{CH}_3\mathrm{COO}^-]}{[\mathrm{CH}_3\mathrm{COOH}]} = 1.74 \cdot 10^{-5} \mathrm{M}$$

- Weak electrolytes dissociate only partially in water.
- The extent of dissociation is determined by the acid dissociation constant K_a.
- We can calculate the pH if the K_a is known. But some algebra is needed!

Dissociation of Weak Electrolytes: Example

What is the final pH of a solution when 0.1 moles of acetic acid is added to water to a final volume of 1L?

$$H_{3}C \xrightarrow{O}_{OH} \xrightarrow{K_{a}}_{H_{3}C} H_{3}C \xrightarrow{O}_{O} + H^{+}$$

$$0.1 - x \qquad x \qquad x$$

$$K_{a} = \frac{[x][x]}{[0.1 - x]} = 1.74 \cdot 10^{-5} M$$

$$x^{2} = 1.74 \cdot 10^{-6} - 1.74 \cdot 10^{-5} x$$

$$x^{2} + 1.74 \cdot 10^{-5} x - 1.74 \cdot 10^{-6} = 0$$

$$x = 0.001310, \quad pH = 2.883$$

- We assume that the only source of H⁺ is the weak acid.
- To find the [H⁺], a quadratic equation must be solved.

Dissociation of Weak Electrolytes: Simplification

- The equation can be simplified if the amount of dissociated species is much less than the amount of undissociated acid.
- Approximation works for sufficiently weak acids and bases.
- Check that *x* < [total acid].

pK_a Measures Acidity

Buffers

- Buffers are solutions that resist change in pH after addition of small quantity of weak acid or base.
- Buffers are mixtures of weak acids and their conjugate base
- Each acid has a conjugate base
- For example B⁻ is the conjugate base of the acid HB

NH_4^+ +	H_2O	<u> </u>	H_3O^+	+	NH ₃
HCl +	H ₂ O	<u> </u>	H ₃ O +	+	Cl-
$HSO_4 +$	H ₂ O		H ₃ O +	+	SO ₄ -
HBr +	H ₂ O	<u> </u>	H_3O^+	+	Br⁻

 $H_2O + H_2O \implies H_3O^+ + OH^-$

Weak acids dissociate weakly because they have strong conjugate base that bind hydrogen.

Strong acids ionize easily to give H⁻ because they have weak conjugate base

Acids are proton donors

Bases are proton acceptors

At $pH = pK_a$, there is a 50:50 mixture of acid and anion forms of the compound.

Buffering capacity of acid/anion system is greatest at $pH = pK_{a}$.

Buffering capacity is lost when the pH differs from pK_a by more than 1 pH unit.

Henderson–Hasselbalch Equation: Derivation

Henderson–Hasselbalch Equation: Example

A buffer is comprised of 0.1 M Acetic acid (CH_3COOH , pKa=4.76) and 0.05 M Sodium acetate (CH_3COONa). What is the final pH of the buffer?

$$pH=4.76 + log \frac{[0.05]}{[0.1]}$$

Final buffer pH = 4.45

Biological Buffer Systems

- Maintenance of intracellular pH is vital to all cells.
 - Enzyme-catalyzed reactions have optimal pH.
 - Solubility of polar molecules depends on H-bond donors and acceptors.
 - Equilibrium between CO₂ gas and dissolved HCO₃⁻ depends on pH.
- Buffer systems *in vivo* are mainly based on:
 - phosphate, concentration in millimolar range
 - bicarbonate, important for blood plasma
 - histidine, efficient buffer at neutral pH
- Buffer systems *in vitro* are often based on sulfonic acids of cyclic amines.
 - HEPESPIPES
- HO____N____SO₃Na
- CHES

Quiz

Answer by marking true (T) or False (F)

1.	The most abundant elements in cell are C H N O P S ()
2.	Molybdenum, bromide and boron are examples of trace elements)
3.	Water represents 50% of the living cell)
4.	Covalent bond is the strongest bond in biochemistry ()
5.	Hydrogen bond can be dissociated by heating or changing pH()
6.	The difference between O and H in electrone gativity creates covalent bonds $\hfill \ldots$ ()
7.	Most of the water soluble compounds have polar or charged groups ()
8.	Each $\rm H_2O$ molecule can bind 3 other $\rm H_2O$ to form complex of $\rm 4H_2O$ ()
9.	The Oxygen in water molecule has one partial negative charge)

Quiz

Answer by marking true (T) or False (F)

1.H ₂ O can function as an acid or a base)
2.The structure of H ₂ O is a linear molecule	()
3.Phenols act as a weak acid as it gives protons to a strong base	()
4.Sulpher is less electronegative than Oxygen	()
5.An acid is a substance that can accept a proton	()