Chapter 1: Stoichiometry

- 1. The atomic mass of C is 12.011 u. How many moles of C are there in a 3.50 g sample of carbon?
 - * a. 0.291 moles
 - b. 0.374 moles
 - c. 1.00 moles
 - d. 3.43 moles
 - e. 3.50 moles

$$n = \frac{m}{MM} = \frac{3.50}{12} = 0.291$$

- 2. The formula mass of $Ni(H_2O)_6Cl_2$ is
 - a. 157.69 u
 - b. 193.00 u
 - c. 227.61 u
 - * d. 237.69 u
 - e. 296.83 u

- 3. If the atomic mass of gold is 196.9665 **u**, how many grams of gold are in 0.150 mol Au?
 - a. 7.62×10^{-4} g
 - * b. 29.5 g
 - c. 29.54498 g
 - d. 7.61551×10^{-4} g
 - e. 0.903 g

$m = n \times MM = 0.150 \times 196.9665 = 29.5 g$

- 4. How many molecules of carbon dioxide (CO₂) are in 154.0 grams of carbon dioxide?
 - a. 3.499
 - * b. 2.107×10^{24}
 - c. 4.214×10^{24}
 - d. 9.274×10^{25}
 - e. 4.081×10^{27}

$$n = \frac{m}{MM} = \frac{154}{44}$$
 $n \times N_A = 154 \times 6.02 \times 10^{23} / 44 = 2.107 \times 10^{24}$

- 5. A sample of $Ca_3(PO_4)_2$ contains 3.51 moles of calcium ions. How many moles of $Ca_3(PO_4)_2$ are in that sample?
 - a. 3.55 moles
 - b. 0.491 moles
 - c. 10.5 moles
 - * d. 1.17 moles

e. 3.51×10^{21} moles

1 mol Ca₃(PO₄)₂ contains 3 mol Ca 3.51 mol Ca $N=3.51 \times 1 / 3 = 1.17 \text{ mol}$

- 6. What is the percent, by mass, of chromium in K2CrO4? Use a periodic table to find the atomic masses.
 - a. 26.776 %
 - b. 31.763 %
 - c. 40.268 %
 - d. 42.241 %
 - e. 51.996 %

%Cr = $(n \times MM_{Cr} / MM_{K2CrO4}) \times 100 = [(1 \times 52 / (2\times39 + 1\times52 + 4\times16)] \times 100]$ =26.773%

- 7. A sample of Ni(CO)₄, a toxic transition-metal complex, has 5.23×10^{24} atoms of carbon. How many atoms of Ni does it contain?

 - a. 6.02×10^{23} atoms b. 1.50×10^{23} atoms
 - c. 1/4 atom
 - d. 20.9×10^{23} atoms
 - e. 1.31×10^{24} atoms

1 mol Ni(CO)₄ contain 4 mol C and 1 mol Ni
4 x 6.02 x
$$10^{23}$$
 atoms $1 \times 6.02 \times 10^{23}$ atoms

- 8. A sample of sulfolane, $C_4H_8O_2S$, contains 5.00×10^{24} atoms. How many moles of sulfolane are in the sample?
 - a. 0.120 moles
 - * b. 0.554 moles
 - c. 1.81 moles
 - d. 8.30 moles
 - e. 3.33×10^{23} moles

1 mol $C_4H_8O_2S$ contains (4+8+2+1) moles of atoms =15 moles = 15 x 6.02 x 10^{23} atoms 5.00×10^{24} atoms

??= $5.00 \times 10^{24} / (15 \times 6.02 \times 10^{23}) = 0.554 \text{ mol}$

- 9. A sample of C₇H₅N₃O₄ has a mass of 7.81 g. What is the mass of oxygen in this sample?
 - a. 31.2 g
 - * b. 2.56 g

c.
$$3.20 \times 10^{23}$$
 g

- d. 64.0 g
- e. 1.75 g

1 mol
$$C_7H_5N_3O_4 = (7x12 + 5x1 + 3x14 + 4x16) = 195 g$$
 contains 4 mol $O = 4x16 g O$
7.81 g

$?? = 7.81 \times 4 \times 16 / 195 = 2.56 g$

- 10. Which one of the following is definitely not an empirical formula?
 - a. $C_{12}H_{16}O_3$
 - b. $C_{12}H_{22}O_{11}$
 - c. $C_3H_8O_2$
 - d. $C_4H_{12}N_2O$
 - * e. $C_6H_{12}O_4$

Because can be divided by whole number (by 2) C₃H₆O₂

- 11. A compound has an empirical formula of CH₂Cl. An independent analysis gave a value of 99.0 for its molar mass. What is the molecular formula of the compound?
 - a. CH₂Cl
 - * b. $C_2H_4Cl_2$
 - c. C₂H₂Cl₄
 - d. C₃H₆Cl₃
 - e. $C_3H_3Cl_6$

R.F =
$$MM_{compound}$$
 / $MMempirical formula = 99/ (12x1 +2x1 + 1x35.5) = 2 (CH2Cl)2 = $C_2H_4Cl_2$$

- 12. Magnetite is a binary compound containing only iron and oxygen. The percent, by weight, of iron is 72.360 %. What is the empirical formula of magnetite?
 - a. FeO
 - b. FeO₂
 - * c. Fe₃O₄
 - d. Fe_2O_3
 - e. Fe₂O₅

- 13. Zinc metal reacts with aqueous hydrochloric acid to give an aqueous solution of zinc chloride and hydrogen gas. Select the correct balanced chemical equation for this reaction.
 - a. $Zn(s) + HCl(aq) \rightarrow 3ZnCl(aq) + H_2(g)$
 - b. $Zn(s) + HCl(g) \rightarrow ZnCl(aq) + H(g)$

```
* c. Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)
```

d.
$$2Zn(s) + 4HCl(aq) \rightarrow 2ZnCl_2(aq) + H_2(g)$$

e.
$$2Zn(s) + HCl(aq) \rightarrow 2ZnCl_2(aq) + H_2(g)$$

14. Given: $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

If the reaction starts with 0.500 mol of H_2 , how many atoms of hydrogen in the compound NH_3 would you expect to make?

a.
$$3.01 \times 10^{23}$$
 atoms

* b.
$$6.02 \times 10^{23}$$
 atoms

c.
$$12.04 \times 10^{23}$$
 atoms

d. 1 atom

e. 6 atoms

3 mol H₂ gives 2 mol NH₃

0.5 mol ?:

 $n = 0.5 \times 2 / 3 = 0.333 \text{ mol NH}_3$

1 mol NH₃ contains 3 mol H

0.333mol

??

 $n = 0.333 \times 3 = 1 \text{ mol}$

 $N = n \times N_A = 1 \times 6.02 \times 10^{23} = 6.02 \times 10^{23}$ atoms of H

- 15. In a chemical reaction, 3 C₂H₆O + 1 PCl₃ \rightarrow 3 C₂H₅Cl + 1 H₃PO₃, when the equation is balanced the sum of the coefficients of the reactants and products should be
 - a. 4
 - b. 5
 - c. 6
 - d. 7
 - * e. 8
- 16. You are given the balanced chemical equation:

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O.$$

If 0.3818 moles of C_3H_8 and 1.718 moles of O_2 are allowed to react, and this is the only reaction which occurs, theoretically how many moles of water should be produced?

- a. 1.336 moles
- * b. 1.374 moles
 - c. 1.527 moles
 - d. 1.718 moles
 - e. 3.426 moles

 $\begin{array}{ccccc} C_3H_8 & + & 5 \ O_2 \\ 1 \ mol & 5 \ mol \\ 0.3818 \ mol & 1.718 \ moles \\ 0.3818/1 & 1.718/5 \\ 0.3818 & > & 0.3436 \end{array}$

smaller no is L.R O₂ is limiting reactant

```
\begin{array}{ccc} 5 \text{ O}_2 & \rightarrow & 4 \text{ H}_2\text{O} \\ 5 \text{ mol} & & 4 \text{ mol} \\ 1.718 \text{mol} & & ?? \end{array}
```

$?? = 1.718 \times 4 / 5 = 1.3744 \text{ mol}$

17. You are given the balanced chemical equation:

$$C_4H_4 + 5 O_2 \rightarrow 4 CO_2 + 2 H_2O.$$

If 0.3618 moles of C_4H_4 are allowed to react with 1.818 moles of O_2 , and this is the only reaction which occurs, what is the maximum mass of water that could be produced?

- a. 11.02 g
 b. 13.04 g
 c. 13.20 g
 d. 19.64 g
 e. 65.50 g
- C₄H₄ + 5 O₂ 1 mol 5 mol 0.3618 mol 1.818 moles 0.3618/1 1.818/5 0.3636

smaller no is L.R C₄H₄ is limiting reactant

```
C_4H_4 \rightarrow 2 H_2O
1 mol 2 \times 18 \text{ g}
0.3618 mol ??g
```

$?? = 0.3618 \times 2 \times 18 / 1 = 13.05 \text{ g H}_2\text{O}$

- 18. The left side of a balanced chemical equation is: $K_2Cr_2O_7 + 4 H_2SO_4 + 3 SeO_2 \rightarrow$ If 0.600 moles of $K_2Cr_2O_7$, 2.800 moles of H_2SO_4 and 1.500 moles of SeO_2 are brought together and allowed to react, then
 - a. H₂SO₄ is the limiting reagent
 - b. K₂Cr₂O₇ is the limiting reagent
 - c. there are 1.300 moles of H₂SO₄ in excess
 - * d. there are 0.800 moles of H₂SO₄ in excess
 - e. there are 0.300 moles of SeO₂ in excess

1- find limiting reactant

0.6 0.7 0.5 smaller no is L.R SeO₂ is limiting reactant

2- Calculate the reacted

```
K_2Cr_2O_7 + 4 H_2SO_4 + 3 SeO_2 \rightarrow
1 mol
               4 mol
                               3 mol
               ??
                                1.5 mol
? = 1.5/3 = 0.5 \text{ mol } K_2Cr_2O_7 \text{ reacted}
?? = 1.5 \times 4/3 = 2 \text{ mol H}_2SO_4 \text{ reacted}
```

3- Calculate the unreacted (excess)

```
0.6 - 0.5 = 0.1 \text{ mol } K_2Cr_2O_7 \text{ excess}
2.8-2 = 0.8 \text{ mol } H_2SO_4 \text{ excess}
```

- 19. In a chemical equation, $AsF_3 + C_2Cl_6 \rightarrow AsCl_3 + C_2Cl_2F_4$, the theoretical yield of $C_2Cl_2F_4$ was calculated to be 1.86 moles. If the percent yield in the reaction was 77.2%, how many grams of $C_2Cl_2F_4$ were actually obtained?
 - a. 222 grams
 - b. 231 grams
 - * c. 245 grams
 - d. 318 grams
 - e. 412 grams

Percent yield% = (Actuall yield / theoretical yield) x100 Actuall yield = theoretical yield x Percent yield / 100 = 1.86 x 77.2 /100=1.44 mol $M = n \times Mm = 1.44 \times (2x12 + 2x35.5 + 4x19) = 245 g$

- 20. The density of an object is the ratio of its mass to its volume. What is the derived SI unit for density?
 - a. kg m/s³
 - b. kg m/s
 - * c. kg/m^3
 - d. m/s^2
 - e. pounds per cubic inches

d=mass/volume =kg/m³

- 21. What is the number needed to complete the following: $1 \text{ dm} = \underline{\hspace{1cm}} \text{m}$?
 - a. 10
 - b. 20
 - c. 1
 - * d. 0.1
 - e. 0.01

 $1dm = 1x10^{-1} m = 0.1 m$

- 22. The SI base units of temperature and mass, respectively, are
 - a. degree and gram.
 - * b. kelvin and kilogram.
 - c. Celsius and milligram.
 - d. degree and kilogram.
 - e. kelvin and gram.
- 23. The SI prefixes giga and micro, indicate respectively:
 - * a. 10^9 and 10^{-6}
 - b. 10⁻⁹ and 10⁻⁶
 - c. 10^6 and 10^{-3}
 - d. 10^3 and 10^{-3}
 - e. 10^{-9} and 10^{-3}
- 24. A solution of sodium nitrite is prepared by mixing 3.25 g of NaNO₂ with 12.0 g of water. The percent, by mass, of NaNO₂ is:
 - a. 28.0 %
 - b. 23.3 %
 - c. 27.0 %
 - * d. 21.3 %
 - e. 37.1 %

% w/w = mass of solute x 100 / mass of solution = $3.25 \times 100 / (3.25 + 12) = 21.3 \%$

- 25. A solution of potassium nitrate is prepared by mixing 3.50 g of KNO₃ with 12.0 g of water. The percent, by mass, of KNO₃ is:
 - * a. 22.6 %
 - b. 23.3 %
 - c. 28.0 %
 - d. 29.2 %
 - e. 41.8 %

% w/w = mass of solute x 100 / mass of solution = $3.5 \times 100 / (3.5 + 12) = 22.6 \%$

- 26. A glucose solution is prepared by dissolving 5.10 g of glucose, C₆H₁₂O₆, in 110.5 g of water. What is the molality of the glucose solution?
 - a. 0.283 *m*
 - b. 0.000256 *m*
 - c. 0.245 m
 - * d. 0.256 m
 - e. 0.351 *m*

 $m = n(\text{solute}) / \text{Mass of solvent (kg)} = m(\text{solute}) / \text{MM}(\text{solute}) \times \text{Mass of solvent (kg)}$ $m = 5.1 / (6 \times 12 + 12 \times 1 + 6 \times 16) \times 110.5 \times 10^{-3} = 0.256 \text{ m}$

- 27. An aqueous solution of glycerol, $C_3H_8O_3$, is 48.0% glycerol by mass and has a density of 1.120 g mL⁻¹. Calculate the molality of the glycerol solution.
 - a. 11.2 *m*
 - b. 5.84 *m*
 - c. 0.584 m
 - d. 0.521 *m*
 - * e. 10.0 m

 $m = n(\text{solute}) / \text{Mass of solvent (kg)} = m(\text{solute}) / MM(\text{solute}) \times \text{Mass of solvent (kg)}$

48.0% means 48 g solute in 100 g solution m(solvent) = 100 - 48 = 52 g $m = 48 / (3x12 + 8x1 + 3x16) x 52 x 10^{-3} = 10.0 m$

- 28. Consider a 0.900 M Al(NO₃)₃ solution. This solution has a nitrate ion concentration of:
 - a. 0.300 M
 - b. 0.900 M
 - * c. 2.70 M
 - d. 3.60 M
 - e. 8.10 M

1 mol Al(NO₃)₃ contains 3 mol NO₃ ions 0.900 mol ?? mol $3 \times 0.900 = 2.7$ mol

- 29. Which is a concentration unit whose value changes if the temperature of an aqueous solution is changed?
 - a. mole fraction
 - * b. molarity
 - c. molality
 - d. mass fraction
 - e. percent by weight