Chapter 1: Stoichiometry - 1. The atomic mass of C is 12.011 u. How many moles of C are there in a 3.50 g sample of carbon? - * a. 0.291 moles - b. 0.374 moles - c. 1.00 moles - d. 3.43 moles - e. 3.50 moles $$n = \frac{m}{MM} = \frac{3.50}{12} = 0.291$$ - 2. The formula mass of $Ni(H_2O)_6Cl_2$ is - a. 157.69 u - b. 193.00 u - c. 227.61 u - * d. 237.69 u - e. 296.83 u - 3. If the atomic mass of gold is 196.9665 **u**, how many grams of gold are in 0.150 mol Au? - a. 7.62×10^{-4} g - * b. 29.5 g - c. 29.54498 g - d. 7.61551×10^{-4} g - e. 0.903 g # $m = n \times MM = 0.150 \times 196.9665 = 29.5 g$ - 4. How many molecules of carbon dioxide (CO₂) are in 154.0 grams of carbon dioxide? - a. 3.499 - * b. 2.107×10^{24} - c. 4.214×10^{24} - d. 9.274×10^{25} - e. 4.081×10^{27} $$n = \frac{m}{MM} = \frac{154}{44}$$ $n \times N_A = 154 \times 6.02 \times 10^{23} / 44 = 2.107 \times 10^{24}$ - 5. A sample of $Ca_3(PO_4)_2$ contains 3.51 moles of calcium ions. How many moles of $Ca_3(PO_4)_2$ are in that sample? - a. 3.55 moles - b. 0.491 moles - c. 10.5 moles - * d. 1.17 moles e. 3.51×10^{21} moles 1 mol Ca₃(PO₄)₂ contains 3 mol Ca 3.51 mol Ca $N=3.51 \times 1 / 3 = 1.17 \text{ mol}$ - 6. What is the percent, by mass, of chromium in K2CrO4? Use a periodic table to find the atomic masses. - a. 26.776 % - b. 31.763 % - c. 40.268 % - d. 42.241 % - e. 51.996 % %Cr = $(n \times MM_{Cr} / MM_{K2CrO4}) \times 100 = [(1 \times 52 / (2\times39 + 1\times52 + 4\times16)] \times 100]$ =26.773% - 7. A sample of Ni(CO)₄, a toxic transition-metal complex, has 5.23×10^{24} atoms of carbon. How many atoms of Ni does it contain? - a. 6.02×10^{23} atoms b. 1.50×10^{23} atoms - c. 1/4 atom - d. 20.9×10^{23} atoms - e. 1.31×10^{24} atoms 1 mol Ni(CO)₄ contain 4 mol C and 1 mol Ni 4 x 6.02 x $$10^{23}$$ atoms $1 \times 6.02 \times 10^{23}$ - 8. A sample of sulfolane, $C_4H_8O_2S$, contains 5.00×10^{24} atoms. How many moles of sulfolane are in the sample? - a. 0.120 moles - * b. 0.554 moles - c. 1.81 moles - d. 8.30 moles - e. 3.33×10^{23} moles 1 mol $C_4H_8O_2S$ contains (4+8+2+1) moles of atoms =15 moles = 15 x 6.02 x 10^{23} atoms 5.00×10^{24} atoms ??= $5.00 \times 10^{24} / (15 \times 6.02 \times 10^{23}) = 0.554 \text{ mol}$ - 9. A sample of C₇H₅N₃O₄ has a mass of 7.81 g. What is the mass of oxygen in this sample? - a. 31.2 g - * b. 2.56 g c. $$3.20 \times 10^{23}$$ g - d. 64.0 g - e. 1.75 g 1 mol $$C_7H_5N_3O_4 = (7x12 + 5x1 + 3x14 + 4x16) = 195 g$$ contains 4 mol $O = 4x16 g O$ 7.81 g ### $?? = 7.81 \times 4 \times 16 / 195 = 2.56 g$ - 10. Which one of the following is definitely not an empirical formula? - a. $C_{12}H_{16}O_3$ - b. $C_{12}H_{22}O_{11}$ - c. $C_3H_8O_2$ - d. $C_4H_{12}N_2O$ - * e. $C_6H_{12}O_4$ ### Because can be divided by whole number (by 2) C₃H₆O₂ - 11. A compound has an empirical formula of CH₂Cl. An independent analysis gave a value of 99.0 for its molar mass. What is the molecular formula of the compound? - a. CH₂Cl - * b. $C_2H_4Cl_2$ - c. C₂H₂Cl₄ - d. C₃H₆Cl₃ - e. $C_3H_3Cl_6$ R.F = $$MM_{compound}$$ / $MMempirical formula = 99/ (12x1 +2x1 + 1x35.5) = 2 (CH2Cl)2 = $C_2H_4Cl_2$$ - 12. Magnetite is a binary compound containing only iron and oxygen. The percent, by weight, of iron is 72.360 %. What is the empirical formula of magnetite? - a. FeO - b. FeO₂ - * c. Fe₃O₄ - d. Fe_2O_3 - e. Fe₂O₅ - 13. Zinc metal reacts with aqueous hydrochloric acid to give an aqueous solution of zinc chloride and hydrogen gas. Select the correct balanced chemical equation for this reaction. - a. $Zn(s) + HCl(aq) \rightarrow 3ZnCl(aq) + H_2(g)$ - b. $Zn(s) + HCl(g) \rightarrow ZnCl(aq) + H(g)$ ``` * c. Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g) ``` d. $$2Zn(s) + 4HCl(aq) \rightarrow 2ZnCl_2(aq) + H_2(g)$$ e. $$2Zn(s) + HCl(aq) \rightarrow 2ZnCl_2(aq) + H_2(g)$$ 14. Given: $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$ If the reaction starts with 0.500 mol of H_2 , how many atoms of hydrogen in the compound NH_3 would you expect to make? a. $$3.01 \times 10^{23}$$ atoms * b. $$6.02 \times 10^{23}$$ atoms c. $$12.04 \times 10^{23}$$ atoms d. 1 atom e. 6 atoms 3 mol H₂ gives 2 mol NH₃ 0.5 mol ?: $n = 0.5 \times 2 / 3 = 0.333 \text{ mol NH}_3$ 1 mol NH₃ contains 3 mol H 0.333mol ?? $n = 0.333 \times 3 = 1 \text{ mol}$ $N = n \times N_A = 1 \times 6.02 \times 10^{23} = 6.02 \times 10^{23}$ atoms of H - 15. In a chemical reaction, 3 C₂H₆O + 1 PCl₃ \rightarrow 3 C₂H₅Cl + 1 H₃PO₃, when the equation is balanced the sum of the coefficients of the reactants and products should be - a. 4 - b. 5 - c. 6 - d. 7 - * e. 8 - 16. You are given the balanced chemical equation: $$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O.$$ If 0.3818 moles of C_3H_8 and 1.718 moles of O_2 are allowed to react, and this is the only reaction which occurs, theoretically how many moles of water should be produced? - a. 1.336 moles - * b. 1.374 moles - c. 1.527 moles - d. 1.718 moles - e. 3.426 moles $\begin{array}{ccccc} C_3H_8 & + & 5 \ O_2 \\ 1 \ mol & 5 \ mol \\ 0.3818 \ mol & 1.718 \ moles \\ 0.3818/1 & 1.718/5 \\ 0.3818 & > & 0.3436 \end{array}$ smaller no is L.R O₂ is limiting reactant ``` \begin{array}{ccc} 5 \text{ O}_2 & \rightarrow & 4 \text{ H}_2\text{O} \\ 5 \text{ mol} & & 4 \text{ mol} \\ 1.718 \text{mol} & & ?? \end{array} ``` #### $?? = 1.718 \times 4 / 5 = 1.3744 \text{ mol}$ 17. You are given the balanced chemical equation: $$C_4H_4 + 5 O_2 \rightarrow 4 CO_2 + 2 H_2O.$$ If 0.3618 moles of C_4H_4 are allowed to react with 1.818 moles of O_2 , and this is the only reaction which occurs, what is the maximum mass of water that could be produced? - a. 11.02 g b. 13.04 g c. 13.20 g d. 19.64 g e. 65.50 g - C₄H₄ + 5 O₂ 1 mol 5 mol 0.3618 mol 1.818 moles 0.3618/1 1.818/5 0.3636 smaller no is L.R C₄H₄ is limiting reactant ``` C_4H_4 \rightarrow 2 H_2O 1 mol 2 \times 18 \text{ g} 0.3618 mol ??g ``` ### $?? = 0.3618 \times 2 \times 18 / 1 = 13.05 \text{ g H}_2\text{O}$ - 18. The left side of a balanced chemical equation is: $K_2Cr_2O_7 + 4 H_2SO_4 + 3 SeO_2 \rightarrow$ If 0.600 moles of $K_2Cr_2O_7$, 2.800 moles of H_2SO_4 and 1.500 moles of SeO_2 are brought together and allowed to react, then - a. H₂SO₄ is the limiting reagent - b. K₂Cr₂O₇ is the limiting reagent - c. there are 1.300 moles of H₂SO₄ in excess - * d. there are 0.800 moles of H₂SO₄ in excess - e. there are 0.300 moles of SeO₂ in excess ## 1- find limiting reactant 0.6 0.7 0.5 smaller no is L.R SeO₂ is limiting reactant #### 2- Calculate the reacted ``` K_2Cr_2O_7 + 4 H_2SO_4 + 3 SeO_2 \rightarrow 1 mol 4 mol 3 mol ?? 1.5 mol ? = 1.5/3 = 0.5 \text{ mol } K_2Cr_2O_7 \text{ reacted} ?? = 1.5 \times 4/3 = 2 \text{ mol H}_2SO_4 \text{ reacted} ``` #### **3- Calculate the unreacted (excess)** ``` 0.6 - 0.5 = 0.1 \text{ mol } K_2Cr_2O_7 \text{ excess} 2.8-2 = 0.8 \text{ mol } H_2SO_4 \text{ excess} ``` - 19. In a chemical equation, $AsF_3 + C_2Cl_6 \rightarrow AsCl_3 + C_2Cl_2F_4$, the theoretical yield of $C_2Cl_2F_4$ was calculated to be 1.86 moles. If the percent yield in the reaction was 77.2%, how many grams of $C_2Cl_2F_4$ were actually obtained? - a. 222 grams - b. 231 grams - * c. 245 grams - d. 318 grams - e. 412 grams Percent yield% = (Actuall yield / theoretical yield) x100 Actuall yield = theoretical yield x Percent yield / 100 = 1.86 x 77.2 /100=1.44 mol $M = n \times Mm = 1.44 \times (2x12 + 2x35.5 + 4x19) = 245 g$ - 20. The density of an object is the ratio of its mass to its volume. What is the derived SI unit for density? - a. kg m/s³ - b. kg m/s - * c. kg/m^3 - d. m/s^2 - e. pounds per cubic inches # d=mass/volume =kg/m³ - 21. What is the number needed to complete the following: $1 \text{ dm} = \underline{\hspace{1cm}} \text{m}$? - a. 10 - b. 20 - c. 1 - * d. 0.1 - e. 0.01 $1dm = 1x10^{-1} m = 0.1 m$ - 22. The SI base units of temperature and mass, respectively, are - a. degree and gram. - * b. kelvin and kilogram. - c. Celsius and milligram. - d. degree and kilogram. - e. kelvin and gram. - 23. The SI prefixes giga and micro, indicate respectively: - * a. 10^9 and 10^{-6} - b. 10⁻⁹ and 10⁻⁶ - c. 10^6 and 10^{-3} - d. 10^3 and 10^{-3} - e. 10^{-9} and 10^{-3} - 24. A solution of sodium nitrite is prepared by mixing 3.25 g of NaNO₂ with 12.0 g of water. The percent, by mass, of NaNO₂ is: - a. 28.0 % - b. 23.3 % - c. 27.0 % - * d. 21.3 % - e. 37.1 % % w/w = mass of solute x 100 / mass of solution = $3.25 \times 100 / (3.25 + 12) = 21.3 \%$ - 25. A solution of potassium nitrate is prepared by mixing 3.50 g of KNO₃ with 12.0 g of water. The percent, by mass, of KNO₃ is: - * a. 22.6 % - b. 23.3 % - c. 28.0 % - d. 29.2 % - e. 41.8 % % w/w = mass of solute x 100 / mass of solution = $3.5 \times 100 / (3.5 + 12) = 22.6 \%$ - 26. A glucose solution is prepared by dissolving 5.10 g of glucose, C₆H₁₂O₆, in 110.5 g of water. What is the molality of the glucose solution? - a. 0.283 *m* - b. 0.000256 *m* - c. 0.245 m - * d. 0.256 m - e. 0.351 *m* $m = n(\text{solute}) / \text{Mass of solvent (kg)} = m(\text{solute}) / \text{MM}(\text{solute}) \times \text{Mass of solvent (kg)}$ $m = 5.1 / (6 \times 12 + 12 \times 1 + 6 \times 16) \times 110.5 \times 10^{-3} = 0.256 \text{ m}$ - 27. An aqueous solution of glycerol, $C_3H_8O_3$, is 48.0% glycerol by mass and has a density of 1.120 g mL⁻¹. Calculate the molality of the glycerol solution. - a. 11.2 *m* - b. 5.84 *m* - c. 0.584 m - d. 0.521 *m* - * e. 10.0 m $m = n(\text{solute}) / \text{Mass of solvent (kg)} = m(\text{solute}) / MM(\text{solute}) \times \text{Mass of solvent (kg)}$ 48.0% means 48 g solute in 100 g solution m(solvent) = 100 - 48 = 52 g $m = 48 / (3x12 + 8x1 + 3x16) x 52 x 10^{-3} = 10.0 m$ - 28. Consider a 0.900 M Al(NO₃)₃ solution. This solution has a nitrate ion concentration of: - a. 0.300 M - b. 0.900 M - * c. 2.70 M - d. 3.60 M - e. 8.10 M 1 mol Al(NO₃)₃ contains 3 mol NO₃ ions 0.900 mol ?? mol $3 \times 0.900 = 2.7$ mol - 29. Which is a concentration unit whose value changes if the temperature of an aqueous solution is changed? - a. mole fraction - * b. molarity - c. molality - d. mass fraction - e. percent by weight