Atomic weight: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~F}=19, \mathrm{Ne}=20.2, \mathrm{Al}=27$, $P=31, S=32, K=39, \mathrm{Cl}=35.5, \mathrm{Ar}=40, \mathrm{Cr}=52, \mathrm{Cu}=63.55, \mathrm{Ag}=108 \mathrm{amu}$

Ex. 1: For the reaction of 50.0 g of N_{2} with H_{2}, determine the theoretical yield of ammonia. If 49.6 g of NH_{3} was actually produced, calculate the percent yield for the reaction.

$$
\mathrm{Mw} \mathrm{~N}_{2}=2 \times 14=28 \mathrm{amu}, \mathrm{Mw} \mathrm{NH}_{3}=14+(3 \times 1)=17 \mathrm{amu}
$$

Sol.

$\mathrm{N}_{2}+3 \mathrm{H}_{2}$	$\rightarrow 2 \mathrm{NH}_{3}$
28 g	$2 \times 17 \mathrm{~g}$
50 g	$? \mathrm{~g}$

$50 \times 2 \times 17$
Theoretical Yield = --------------- = $\mathbf{6 0 . 7 1} \mathrm{g} \mathrm{NH}_{3}$ 28

Percent Yield = -----------------	

Ex. 2: Chlorofluorocarbons which has the formula $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ and can be prepared as follows:

$$
2 \mathrm{HF}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{l}) \rightarrow \mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

Calculate the mass of CCl_{4} necessary to react completely with 50.0 g of HF.

$$
\mathrm{Mw} \mathrm{HF}=1+19=20 \mathrm{amu}, \mathrm{Mw} \mathrm{CCl}_{4}=(1 \times 12)+(4 \times 35.5)=154 \mathrm{amu}
$$

Sol. $\quad 2 \mathrm{HF}(\mathrm{g})+\mathrm{CCl}_{4}$ (1)

$$
\begin{array}{cc}
2 \times 20 \mathrm{~g} & 1 \times 154 \mathrm{~g} \\
50 \mathrm{~g} & ? \quad \mathrm{~g}
\end{array}
$$

50×154
? $=--------------=192.5$ g CCl $_{4}$
2×20

Ex. 3: Chlorofluorocarbons which has the formula $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ and can be prepared as follows:

Calculate the mass of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ produced when 50.0 g of CCl_{4} reacts completely.
$\mathrm{Mw} \mathrm{CCl}_{2} \mathrm{~F}_{2}=(1 \times 12)+(2 \times 35.5)+(2 \times 19)=121 \mathrm{amu}$,
$\mathrm{Mw} \mathrm{CCl} 44=(1 \times 12)+(4 \times 35.5)=154 \mathrm{amu}$
Sol.

$$
\begin{gathered}
\mathrm{CCl}_{4}(\mathrm{l}) \\
1 \mathrm{x} 154 \mathrm{~g} \\
50 \mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \\
50 \mathrm{~g} \\
\hline ? \mathrm{~g} 121 \mathrm{~g} \\
\hline
\end{gathered}
$$

$$
?=----------=39.29 \mathbf{g ~ C C l}_{2} \mathrm{~F}_{2}
$$

$$
154
$$

Ex. 4: Chlorofluorocarbons which has the formula $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ and can be prepared as follows:
$2 \mathrm{HF}(\mathrm{g})+\mathrm{CCl}_{4}(\mathrm{l}) \rightarrow \mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{g})$
Calculate the mass of HCl produced when 50.0 g of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ is produced.
$\mathrm{Mw} \mathrm{CCl}{ }_{2} \mathrm{~F}_{2}=121 \mathrm{amu}, \mathrm{Mw} \mathrm{HCl}=1+35.5=36.5 \mathrm{amu}$
Sol.

$$
\begin{array}{cc}
\mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g}) \\
121 \mathrm{~g} & 2 \times 36.5 \mathrm{~g} \\
50 \mathrm{~g} & ? \quad \mathrm{~g}
\end{array}
$$

```
    50\times2 x 36.5
?=
    --------------------- = 30.17 g HCl
```

Ex. 5: Consider the following:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of O_{2} will react with 2.50 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
Sol.

$$
\begin{gathered}
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \\
2 \mathrm{~mol} \quad 7 \mathrm{~mol} \\
2.50 \mathrm{~mol} \quad ? \mathrm{~mol} \\
2.50 \times 7 \\
?=--------\mathbf{~}=\mathbf{8 . 7 5} \mathbf{~ m o l ~ O} \\
2
\end{gathered}
$$

Ex. 6: Consider the following:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many moles of CO_{2} form when 3.50 moles of O_{2} completely react?
Sol. $\quad 7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})$
$7 \mathrm{~mol} \quad 4 \mathrm{~mol}$
3.5 mol ? mol
3.5×4
? = ------------- = $\mathbf{2 . 0} \mathbf{~ m o l ~ C O}$
7

Ex. 7: Consider the following:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of $\mathrm{H}_{2} \mathrm{O}$ form when 4.50 moles of CO_{2} form?
Sol.

$$
\begin{aligned}
& 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 4 \mathrm{~mol} \\
& 4.5 \mathrm{~mol} \quad ? \mathrm{~mol} \\
& 0.5 \mathrm{~mol}
\end{aligned}
$$

4.5×6
? = ----------------- = $6.75 \mathrm{~mol} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Ex. 8: Consider the following:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are required to produce 5.50 moles of $\mathrm{H}_{2} \mathrm{O}$?
Sol.

$$
\begin{array}{lc}
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow & 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
2 \mathrm{~mol} & 6 \mathrm{~mol} \\
? \mathrm{~mol} & 5.5 \mathrm{~mol}
\end{array}
$$

5.5×2

$$
\begin{aligned}
& ?=-------\cdots------=\mathbf{1 . 8 3} \mathbf{~ m o l ~ C}_{\mathbf{2}} \mathrm{H}_{\mathbf{6}} \\
& 6
\end{aligned}
$$

Ex. 9: Balance the equation:

$$
\mathrm{P}_{4}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~s})
$$

Sol.

$$
\mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})
$$

Ex. 10: Balance the equation:

$$
\mathrm{MgO}(\mathrm{~s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{Mg}(\mathrm{~s})
$$

Sol.

$$
2 \mathrm{MgO}(\mathrm{~s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{Mg}(\mathrm{~s})
$$

Ex. 11: Balance the equation:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Fe}(\mathrm{~s})
$$

Sol.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Fe}(\mathrm{~s})
$$

Ex. 12: Balance the equation:

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

Sol. $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

Ex. 13: Balance the equation:

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})
$$

Sol. $\quad \mathbf{2 ~ H C l}(\mathbf{a q})+\mathbf{C a}(\mathbf{O H})_{2}(\mathbf{a q}) \rightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}(\mathrm{l})+\mathbf{C a C l}_{\mathbf{2}}(\mathbf{a q})$

Ex. 14: Balance the equation:

$$
\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Sol. $\quad 2 \mathrm{C}_{4} \mathrm{H}_{\mathbf{1 0}}(\mathrm{g})+\mathbf{1 3 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{8} \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{1 0} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Ex. 15: How many moles of Ne are in 50.0 g Ne ?
Aw $\mathrm{Ne}=20.2 \mathrm{amu}$
Sol. $\quad 1 \mathrm{~mol} \mathrm{Ne}=6.02 \times 10^{23} \mathrm{Ne}$ atoms $=20.2 \mathrm{~g}$
$? \mathrm{~mol} \quad 50.0 \mathrm{~g}$
50.0×1
? = ----------------- = $2.48 \mathbf{m o l ~ N e ~}$
20.2

Ex. 16: How many Ne atoms are in 50.0 g of Ne ?
$\mathrm{Aw} \mathrm{Ne}=20.2 \mathrm{amu}$
Sol. $1 \mathrm{~mol} \mathrm{Ne}=6.02 \times 10^{23} \mathrm{Ne}$ atoms $=20.2 \mathrm{~g} \mathrm{Ne}$ mass ? atoms $\quad 50.0 \mathrm{~g}$

Ex. 17: How many moles of CO_{2} are in 25.0 g of CO_{2} ?
$\mathrm{Mw}: \mathrm{CO}_{2}=12+(2 \times 16)=44 \mathrm{amu}$
Sol. $1 \mathrm{~mol} \mathrm{CO}_{2}=6.02 \times 10^{23} \mathrm{CO}_{2}$ molecules $=44 \mathrm{~g} \mathrm{CO}_{2}$ mass
? mol
25.0 g

$$
?=\frac{25.0 \times 1}{44}
$$

Ex. 18: How many CO_{2} molecules are in 25.0 g of CO_{2} ?

$$
\mathrm{Mw}: \mathrm{CO}_{2}=12+(2 \times 16)=44 \mathrm{amu}
$$

Sol. $1 \mathrm{~mol} \mathrm{CO}_{2}=6.02 \times 10^{23} \mathrm{CO}_{2}$ molecules $=44 \mathrm{~g} \mathrm{CO}_{2}$ mass ? molecules $\quad 25.0 \mathrm{~g} \mathrm{CO}_{2}$

$$
?=----------------------=\mathbf{3 . 4 2} \mathbf{C O}_{\mathbf{2}} \text { molecules }
$$

Ex. 19: How many oxygen atoms are in 25.0 g of CO_{2} ?
$\mathrm{Mw}: \mathrm{CO}_{2}=12+(2 \times 1)=44 \mathrm{amu}$
Sol. $1 \mathrm{~mol} \mathrm{CO}_{2}=6.02 \times 10^{23} \mathrm{CO}_{2}$ molecules $=44 \mathrm{~g} \mathrm{CO}_{2}$ mass

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{CO}_{2}=2 \mathrm{~mol} \mathrm{O}=2 \times 6.02 \times 10^{23} \mathrm{O} \text { atoms }=44 \mathrm{~g} \mathrm{CO}_{2} \\
& ? \quad \mathrm{O} \text { atoms } \quad 25.0 \mathrm{~g}
\end{aligned}
$$

Ex. 20: Glucose has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. How many grams of carbon are in 39.0 g of glucose?

$$
\mathrm{Mw} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=(6 \times 12)+12+(6 \times 16)=180 \mathrm{amu}
$$

Sol. $\quad 180 \mathrm{~g}$ mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \mathrm{~mol} \mathrm{C}=6 \mathrm{x} 12 \mathrm{~g} \mathrm{C}$ mass
39 g ? gC

$$
?=--------------\mathbf{~} \quad \mathbf{1 5 . 6} \mathbf{~ g ~ C}
$$

Ex. 21: How many grams of nitrogen are needed to completely react with 0.525 g of hydrogen in the formation of ammonia?

$$
\mathrm{Mw} \mathrm{~N}_{2}=2 \times 14=28 \mathrm{amu}, \mathrm{Mw} \mathrm{H}_{2}=2 \times 1=2 \mathrm{amu}
$$

Sol.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 28 \mathrm{~g} \quad 3 \mathrm{x} 2 \mathrm{~g} \\
& ? \mathrm{~g} \quad 0.525 \mathrm{~g}
\end{aligned}
$$

Ex. 22: How many moles of H_{2} are needed to combine with 5.84 g of N_{2} in the formation of ammonia?

$$
\mathrm{Mw} \mathrm{~N}_{2}=2 \times 14=28 \mathrm{amu}
$$

Sol.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 28 \mathrm{~g} \quad 3 \mathrm{~mol} \\
& 5.84 \mathrm{~g} \quad ? \mathrm{~mol}
\end{aligned}
$$

5.84×3

$$
\begin{aligned}
& \text { ? }=--------------=\mathbf{0 . 6 2 ~ m o l ~ \mathbf { H } _ { \mathbf { 2 } }} \\
& 28 \\
& \hline
\end{aligned}
$$

Ex. 23: How many grams of N_{2} will be needed to produce 0.384 moles of NH_{3} ?

$$
\mathrm{Mw} \mathrm{~N}_{2}=2 \times 14=28 \mathrm{amu}
$$

Sol.

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow & \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
28 \mathrm{~g} & 2 \mathrm{~mol} \\
? \mathrm{~g} & 0.384 \mathrm{~mol}
\end{array}
$$

$$
?=\frac{28 \times 0.384}{2}-\cdots-----\mathbf{5 . 3 7 6} \mathbf{~ g ~ \mathbf { N } _ { 2 }}
$$

Ex. 24: According to the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

Determine the theoretical yield of Cu for 0.5 g of Al reactant. If 1.53 g of Cu was actually produced, calculate the percent yield for the reaction.
Sol. $\quad 2 \mathrm{Al}(\mathrm{s}) \rightarrow 3 \mathrm{Cu}$ (s)
$2 \times 27 \mathrm{~g} \quad 3 \times 63.55 \mathrm{~g}$
0.5 g ? g
$0.5 \times 3 \times 63.55$
? = ----------------------- = 1.77 g Cu Theoretical Yield
2×27
1.53

Percentage Yield\% = ------------ x $100=\mathbf{8 6 . 4 \%}$

$$
1.77
$$

Ex. 25: How much glucose is required to prepare 200 mL of 0.150 M of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

$$
\mathrm{Mw} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=(6 \times 12)+12+(6 \times 16)=180 \mathrm{amu}
$$

Sol.

M (molarity)= | Moles of solute (mol) |
| :--- |
| Volume of solution (L) |$\quad \mathrm{mM}_{\text {(solute) }}(\mathrm{g})$

$\mathrm{m}=\mathrm{M} \times \mathrm{MM} \times \mathrm{V}=0.150 \times 180 \times 200 \times 10^{-3}=\mathbf{5 . 4} \mathbf{g ~ C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}}$
Ex. 26: How many Cl atoms are there in 5.01 g of elemental Cl ?
$\mathrm{Mw} \mathrm{Cl} 2=2 \times 35.5=71 \mathrm{amu}$
Sol. $\quad 71 \mathrm{~g} \mathrm{Cl}_{2}=\mathrm{mol} \mathrm{Cl}_{2}=2 \mathrm{~mol} \mathrm{Cl}=2 \times 6.02 \times 10^{23} \mathrm{Cl}$ atoms

$$
5.01 \mathrm{~g} \quad ? \quad \text { atoms }
$$

```
    5.01\times2\times6.02\times1003
?= ------------------------------ = 8.5 x 10 22 Cl atoms

Ex. 27: How many Aratoms are there in 0.00351 g of Ar ?
\(\mathrm{Aw} \mathrm{Ar}=40 \mathrm{amu}\)
Sol. \(1 \mathrm{~mol} \mathrm{Ar}=6.02 \times 10^{23} \mathrm{Ar}\) atoms \(=40 \mathrm{~g} \mathrm{Ar}\) mass ? atoms \(\quad 0.00351 \mathrm{~g} \mathrm{Ar}\)
\[
\begin{aligned}
& 0.00351 \times 6.02 \times 10^{23} \\
& \text { ? = ------------------------------- = } 5.28 \times 10^{19} \text { Ar atoms }
\end{aligned}
\]

Ex. 28: How many moles and atoms in 3.05 g Cu ?
\[
\mathrm{Aw} \mathrm{Cu}=63.5 \mathrm{amu}
\]

Sol. \(\quad 1 \mathrm{~mol} \mathrm{Cu}=6.02 \times 10^{23} \mathrm{Cu}\) atoms \(=63.5 \mathrm{~g} \mathrm{Cu}\) mass ? atoms \(\quad 3.05 \mathrm{~g} \mathrm{Cu}\)
\[
\begin{aligned}
& 3.05 \times 6.02 \times 10^{23} \\
& \text { ? = -------------------------------- }=2.89 \times 10^{22} \mathrm{Cu} \text { atoms }
\end{aligned}
\]

Ex. 29: Balance the reaction: \(\mathrm{NH}_{3}+\mathrm{F}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{~F}_{4}+\mathrm{HF}\)
Sol.
\(2 \mathrm{NH}_{3}+5 \mathrm{~F}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{~F}_{4}+6 \mathrm{HF}\)

Ex. 30: How many grams of Ag in 300 g of \(\mathrm{Ag}_{2} \mathrm{~S}\) ?
\(\mathrm{Aw} \mathrm{Ag}=108 \mathrm{amu}, \mathrm{Mw} \mathrm{Ag} 2 \mathrm{~S}=2 \times 108+1 \times 32=248 \mathrm{amu}\)
Sol. \(248 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}\) mass \(=1 \mathrm{~mol} \mathrm{Ag} 2 \mathrm{~S}=2 \mathrm{~mol} \mathrm{Ag}=2 \mathrm{x} 108 \mathrm{~g} \mathrm{Ag}\) mass \(300 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}\)
? \(\quad \mathrm{g}\)
\[
?=\begin{gathered}
300 \times--------------------------=\mathbf{2 6 1 . 3} \mathbf{g ~ A g} \text { mass } \\
248
\end{gathered}
\]

Ex. 31: Convert 0.250 mol of NaOH to number of Na ions.
Sol. \(1 \mathrm{~mol} \mathrm{NaOH}=1 \mathrm{~mol} \mathrm{Na}=6.02 \times 10^{23} \mathrm{Na}^{+}\)ions
0.250 mol ? ions
\[
\begin{aligned}
& 0.250 \times 6.02 \times 10^{23} \\
& \text { ? = ---------------------------- }=1.505 \times 10^{23} \mathrm{Na}^{+} \text {ions }
\end{aligned}
\]

Ex. 32: Convert 2.0 mol of NaOH to g .
\[
\mathrm{Mw} \mathrm{NaOH}=23+16+1=40 \mathrm{amu}
\]

Sol. \(\mathrm{m}=\mathrm{n} \times \mathrm{xM}\)
\(\mathrm{m}=2.0 \mathrm{X} 40=\mathbf{8 0} \mathbf{g ~ N a O H}\)

Ex. 33: Find concentration in molar of 20.1 g of NaOH in 300 mL volume of solution.
\[
\mathrm{Mw} \mathrm{NaOH}=23+16+1=40 \mathrm{amu}
\]

Sol.
\(\mathrm{M}(\) molarity \()=\)\begin{tabular}{l} 
Moles of solute \((\mathrm{mol}) \quad \mathrm{m}_{\text {(solute })}(\mathrm{g})\) \\
Volume of solution \((\mathrm{L}) \quad \mathrm{MM}_{\text {(solute) }}(\mathrm{g} / \mathrm{mol}) \mathrm{xV}_{\text {(solution) }}(\mathrm{L})\)
\end{tabular}
20.1
\(\mathrm{M}=-----------------------=\mathbf{1 . 6 7 5} \mathbf{~ M}\) or (mol/L)
Ex. 34: How many grams of Cl atoms are needed to combine with 24.4 g of Si atoms to make \(\mathrm{SiCl}_{4}\) ?
\[
\mathrm{Aw} \mathrm{Si}=28 \mathrm{amu}, \mathrm{Aw} \mathrm{Cl}=35.5 \mathrm{amu}
\]

Sol. \(1 \mathrm{~mol} \mathrm{Si}=28 \mathrm{~g}\) Si mass \(=4 \mathrm{~mol} \mathrm{Cl}=4 \times 35.5 \mathrm{~g} \mathrm{Cl}\) atom mass
24.4 g ? g
\(24.4 \times 4 \times 35.5\)
? = -------------------- = \(\mathbf{1 2 3 . 7} \mathbf{g ~ C l}\) atom mass
28
Ex. 35: What is the percent yield of the reaction if 32.8 g of \(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\) is obtained from reaction of 26.3 g of \(\mathrm{C}_{4} \mathrm{H}_{8}\) with sufficient methanol?
\[
\begin{gathered}
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{l}) \\
\mathrm{Mw} \mathrm{C}_{4} \mathrm{H}_{8}=(4 \times 12)+(8 \times 1)=56 \mathrm{amu} \\
\mathrm{Mw} \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}=(5 \times 12)+(12 \times 1)+16=88 \mathrm{amu} \\
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{l}) \\
56 \mathrm{~g} \\
26.3 \mathrm{~g} \quad 88 \mathrm{~g} \\
\quad ? \mathrm{~g}
\end{gathered}
\]

Sol.
\(26.3 \times 88\)
? = ------------- \(=41.33 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\) mass (Theoretical yield) 56


Ex.36: How many grams of \(\mathrm{CO}_{2}\) (theoretical yield)will be formed when a mixture containing \(1.93 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}\) and \(5.92 \mathrm{~g} \mathrm{O}_{2}\) is burned? How many grams of which reactant will remain unreacted?
\[
\mathrm{Mw} \mathrm{C}_{2} \mathrm{H}_{4}=28, \mathrm{Mw} \mathrm{O} \mathrm{O}_{2}=32, \mathrm{Mw} \mathrm{CO} 2=44 \mathrm{amu}
\]

Sol. \(\quad \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
Finding Limiting Reactant: L.R.
Mass \(1.93 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}\) react with \(5.92 \mathrm{~g} \mathrm{O}_{2}\)
Convert to mol. n \(1.93 / 28 \mathrm{~mol} \quad 5.92 / 32 \mathrm{~mol}\)
Mol \(\quad 0.069 \mathrm{~mol} \quad 0.185 \mathrm{~mol}\)
Divide by coefficient 0.069/1 0.185/3
Smallest \# is L.R. \(0.0689 \quad \underline{\mathbf{0 . 0 6 1 7}}\)
\(\mathrm{O}_{2}\) is the limiting reactant. Use the amount of L.R. to calculate the product (theoretical yield of \(\mathrm{CO}_{2}\) )
\[
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 3 \times 32 \mathrm{~g} \quad 2 \mathrm{x} 44 \mathrm{~g} \\
& 5.92 \mathrm{~g} \text { ? } \\
& 5.92 \times 2 \times 44 \\
& \text { ? }=--------------=5.43 \text { g CO}_{2} \text { (Theoretical yield) } \\
& \text { 3x32 }
\end{aligned}
\]

Mass of remain unreacted \(\mathrm{C}_{2} \mathrm{H}_{4}\) (in Excess):
a) Calculate the mass reacted from L.R.
\[
\begin{aligned}
& \text { Sol. } \\
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 28 \mathrm{~g} \quad 3 \times 32 \mathrm{~g} \\
& \text { ? } \quad 5.92 \mathrm{~g} \\
& 5.92 \times 28 \\
& \text { ? = ---------------- }=1.73 \text { g O } \mathbf{O}_{2} \text { (reacted) } \\
& \text { 3x32 }
\end{aligned}
\]
b) Mass of remain unreacted \(=\) mass in reaction - mass reacted Mass of remain unreacted \(=1.93-1.73=\mathbf{0 . 2 0} \mathrm{g} \mathrm{C}_{2} \mathbf{H}_{4}\) unreacted

Ex.37: What is the empirical formula of a compound composed of \(43.7 \% \mathrm{P}\) and \(56.3 \%\) O? \(n=m / M M\)
\begin{tabular}{|c|c|c|c|}
\hline Sol. & P & & O \\
\hline Mass & 43.7 g & & 56.3 g \\
\hline a) Convert mass to moles & 43.7/31 & & 56.3/16 \\
\hline mol & \(\underline{1.41 \mathrm{~mol}}\) & & 3.52 mol \\
\hline b) Divide by smallest \# & 1.41/1.41 & & 3.52/1.41 \\
\hline & 1 & & 2.5 \\
\hline c) Convert to whole \# & & & \\
\hline Multiply by 2 to obtain: & \(2 \times 1=2\) & & \(2 \times 2.5=5\) \\
\hline d) Empirical Formula & \(\left(\mathrm{PO}_{2.5}\right)_{2}\) & \(\rightarrow\) & \(\mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline
\end{tabular}

Ex.38: What is the molecular formula of the compound which has a molecular mass 92.0 and empirical formula is \(\mathrm{NO}_{2}\) ?
\[
\mathrm{Mw} \mathrm{NO} \mathrm{~N}_{2}=46 \mathrm{amu}
\]

Sol.

\section*{Molecular Mass}
a) Find the Repeated Factor (R.F.) \(=\) \(\qquad\)
Mass of the Empirical Formula
Repeated Factor is the number of times the empirical formula repeated in the compound.
92.0
R.F. \(=---------------=2 \quad\) (whole \#)
46.0
b) Multiply Empirical Formula (subscript of element in the formula) by R.F. to get Molecular Formula
\(2 \mathrm{x}\left(\mathrm{NO}_{2}\right) \rightarrow \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}\) Molecular Formula

Ex 39: Calculate the percentage of Cr in \(\mathrm{K}_{2} \mathbf{C r}_{2} \mathrm{O}_{7}\).



Ex.40: What is the molecular formula of the substance which has a molar mass of \(62.1 \mathrm{~g} / \mathrm{mol}\) and is composed of \(38.7 \% \mathrm{C}, 9.7 \% \mathrm{H}\), and the rest of O ?
Sol. Find \%O;
\begin{tabular}{lccc} 
& \(\% \mathrm{O}=100-(38.7+9.7)=51.6 \% \mathrm{O}\) \\
& C & H & O \\
Convert mass to mol & \(38.7 / 12\) & \(9.7 / 1\) & \(51.6 / 16\) \\
Mole & 3.225 & 9.7 & 3.225 \\
Divide by smallest \# & 1 & 3 & 1 \\
Empirical Formula: & \(\mathrm{CH}_{3} \mathrm{O}\) & &
\end{tabular}

Molecular Formula: Find R.F. \(=----------=2\) (multiply by E.F.) The Molecular Formula: \(\quad\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \rightarrow \quad \mathbf{C}_{2} \mathbf{H}_{\mathbf{6}} \mathbf{O}_{\mathbf{2}}\)```

