
1.3 Matrices and Matrix Operations
• A matrix is a rectangular array of numbers. The numbers in the array are called 

the entries in the matrix.
• If a matrix 𝐴 has 𝑚 rows (horizontal lines) 𝑛 columns (vertical lines), then we say 

𝐴 is a size 𝑚 × 𝑛 or 𝐴 ∈ 𝑀𝑚×𝑛.

3 × 2

row matrix
1 × 4

3 × 3
square matrix 

column matrix
2 × 1 

1 ×1
row matrix

column  matrix
Square matrix
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zero matrix
2 ×4 

Example: Types of Matrices



Matrix General Form:
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(i, j)-th entry (or element): (𝐴)𝑖𝑗= 𝑎𝑖𝑗

number of rows: 𝑚
number of columns: 𝑛
size: 𝑚 × 𝑛

Square matrix: 𝑚 =  𝑛

Example:  If  A =
2 4 −1
1 3 0

, then (𝐴)22= 3 and (𝐴)13= −1.  
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Types of Square Matrices: A matrix 𝐴 ∈ 𝑀𝑛×𝑛 is called

• Upper triangular if all entries below its diagonal are 0:

 (𝐴𝑖𝑗 = 0 whenever 𝑖 > 𝑗)

• Lower triangular if all its entries above the diagonal are 0:

 (𝐴𝑖𝑗 = 0 whenever 𝑖 < 𝑗)

• Diagonal if its both upper and lower triangular:

 (𝐴𝑖𝑗 = 0 whenever 𝑖 ≠ 𝑗)

• Identity if it’s a diagonal matrix with all diagonal entries are 1
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5 0 2
1 4 0 0

[3],           ,             ,            0 0 3
0 3 0 0

0 0 1

 
     
     
   

−  

5 0 0
0 0 0 0

[3],           ,             ,            0 2 0
6 3 0 0

7 0 1

 
     
     
   

−  

3 0 0
11 0 0 0

[3],           ,             ,            0 0 0
0 1 0 0

0 0 1

− 
     
     
   

  

1 2 3

1 0 0
1 0

[1],           ,            0 1 0 , 
0 1

0 0 1

I I I

 
   = = =   
 

  



Equal Matrices:
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Two matrices are equal if they have the same size 𝑚 × 𝑛 and entries corresponding 
to the same position are equal, i.e., 𝐴𝑖𝑗 = 𝐵𝑖𝑗  for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.









=








=

dc

ba
BA             

43

21

If  ,  then 1,  2,  3,  and 4A B a b c d= = = = =

Example: Equality of matrices 
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Addition and Scalar Multiplication: Let 𝐴, 𝐵 ∈ 𝑀𝑚×𝑛

Note that 𝐴 − 𝐵 = 𝐴 + −1 𝐵.



Example:  Addition and Scalar Multiplication
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Example:  Linear Combination of Matrices
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Theorem: Properties of Addition and scalar Multiplication

For any 𝐴, 𝐵, 𝐶 ∈ 𝑀𝑚×𝑛 and any 𝑠, 𝑡 ∈ ℝ:

1. 𝐴 + 𝐵 ∈ 𝑀𝑚×𝑛, closed under addition.
2. 𝐴 + 𝐵 = 𝐵 + 𝐴, addition is commutative
3. 𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶 , addition is associative
4. There exists a zero matrix 𝑂𝑚𝑛, such that 𝐴 + 𝑂𝑚𝑛 = 𝐴, additive identity.
5. There exists a matrix −𝐴 ∈ 𝑀𝑚×𝑛 such that 𝐴 + −𝐴 = 𝑂𝑚𝑛,additive inverse.

6. s𝐴 ∈ 𝑀𝑚×𝑛, closed under scalar multiplication.
7. 𝑠(𝑡𝐴) = (𝑠𝑡)𝐴 , scalar multiplication is associative.
8. (𝑠 + 𝑡)𝐴 = 𝑠𝐴 + 𝑡𝐴 matrix distribution.
9. 𝑠(𝐴 + 𝐵) = 𝑠𝐴 + 𝑠𝐵, scalar distribution.

10. 1𝐴 = 𝐴, scalar multiplicative identity.
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Proof of property 3: 
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Matrix Multiplication:
Multiplying a row matrix by a column matrix of the same length:

 

1

2

1 2 1 1 2 2[ ]m m m

m

z

z
y y y y z y z y z

z

 
 
  = + + +
 
 
 

Example:  Multiplying a row matrix by a column matrix

 

1

1 2 3 0 [1 ( 1) 2 0 3 1] [2]

1

− 
  =  − +  +  =
 
  
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Multiplying matrices in general: Let 𝐴 be 𝑚 × 𝑛 and 𝐵 be 𝑛 × 𝑝 matrices. 
𝐴𝐵 is the 𝑚 × 𝑝 matrix found by multiplying every row of 𝐴 by every column of 𝐵. If 𝑟𝑜𝑤𝑖(𝐴) is the 
ith row of 𝐴 and 𝑐𝑜𝑙𝑗(𝐵) is the jth column of 𝐵, then

Example:  Multiplying matrices

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

p

p

m m m p

row A col B row A col B row A col B

row A col B row A col B row A col B
AB

row A col B row A col B row A col B

  

  
=

  

 
 
 
 
 
 

1 1 2 2( ) ( ) ( )ij i j i j i j in njAB row A col B A B A B A B=  = + + +



Note that:

• 𝑟𝑜𝑤𝑖 𝐴𝐵 = 𝑟𝑜𝑤𝑖(𝐴) ∙ 𝐵

Example:

• 𝑐𝑜𝑙𝑗 𝐴𝐵 = 𝐴 ∙ 𝑐𝑜𝑙𝑗 (𝐵)

Example:
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1

2

1 2

( )

( )
( ) ( ) ( )

( )

p

m

row A B

row A B
AB A col B A col B A col B

row A B




= =   



 
 
     
 
 
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Matrix Product as a linear Combination: Let 𝐴 ∈ 𝑀𝑚×𝑛

1

2

1 1 2 2( ) ( ) ( )n n

n

x

x
A x col A x col A x col A

x

 
 
  = + + +
 
 
 
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Matrix Form of a Linear System

Ax b=

𝐴: the coefficient matrix 
𝑥:  the unknown matrix
𝑏: the constant matrix
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1 2

2 3 7
          

1 1 5
x x
     

+ =     −     

1

2

2 3 7
            

1 1 5

x

x

    
=    −    

Notes:



9/3/2025 MATH 244 - 14471 - Fahd M Alshammari 16

Matrix Product as Column-Row Expansion: If 𝐴 is 𝑚 × 𝑛 and 𝐵 
is 𝑛 × 𝑝 matrix. 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )n nAB col A row B col A row B col A row B=  +  + + 

Example: Column-Row Expansion 
Find the column-row expansion of the product

3 1 1 2 4

5 2 0 1 3
AB

   
=    −   

Sol.    
3 1 1 2 4 3 1

1 2 4 0 1 3
5 2 0 1 3 5 2

3 6 12 0 1 3 3 5 15

5 10 20 0 2 6 5 8 26

       
= + −       −       

−     
= + =     −     
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Theorem: Properties of Matrix Multiplication
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WORNINGS

3. The cancelation law does not hold for matrix multiplication, i.e., 𝐴𝐵 = 𝐴𝐶 ⇏ 𝐵 = 𝐶:

−2 3
4 −6

8 4
5 5

=
−2 3
4 −6

5 −2
3 1

=
−1 7
2 −14

1. Matrix Multiplication is not commutative, i.e. in general,  𝐴𝐵 ≠ 𝐵𝐴:

• 𝐴𝐵 maybe defined and 𝐵𝐴 may not, e.g., 𝐴 is 2 × 3 and 𝐵 is 3 × 4.
• 𝐴𝐵 and 𝐵𝐴 may have different sizes, e.g., 𝐴 is 2 × 3 and 𝐵 is 2 × 3.

•
1 2
3 4

5 6
7 8

=
19 ∗
∗ ∗

≠
5 6
7 8

1 2
3 4

=
23 ∗
∗ ∗

2. The product of nonzero matrices can be a zero matrix, i.e., 𝐴𝐵 = 0 ⇏ (𝐴 = 0 𝑜𝑟 𝐵 = 0):

0 1
0 2

3 4
0 0

=
0 0
0 0
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The Transpose of a Matrix 𝐴:
𝐴𝑇is the matrix whose columns are the rows of 𝐴. That is (𝐴𝑇)𝑖𝑗 = 𝐴𝑗𝑖.

Example: Some transposes 

If

Then
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The Trace of a Square Matrix 𝐴 of size 𝑛:
𝑡𝑟(𝐴) is the sum of main diagonal entries of 𝐴. That is 𝑡𝑟 𝐴 = 𝐴11 + 𝐴22 + ⋯ + 𝐴𝑛𝑛.

Example: Finding the trace 

If

1 3 5
1 3 1

,      ,       5 3 2 ,     [4].
0 1 2

4 0 2

a b
A B C D

c d

 
     = = = − =     −   

  

Then tr( ) ,      tr( ) is not defined,       tr( ) 0,     tr( ) 4.A a d B C D= + = =
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Theorem: Properties of Transposes

Theorem: Properties of Trace
Let 𝐴 and 𝐵 be square matrices of the same size.

a.  𝑡𝑟 𝐴 + 𝐵 = 𝑡𝑟 𝐴 + 𝑡𝑟 𝐵
b.    𝑡𝑟 𝑠𝐴 = 𝑠𝑡𝑟 𝐴

c.    𝑡𝑟 𝐴𝑇 = 𝑡𝑟(𝐴)
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1.4 Inverses, More Algebraic Properties of Matrices

Theorem: If 𝐴 ∈ 𝑀𝑛×𝑛, then either 𝑟𝑟𝑒𝑓(𝐴) has a row of zeros or 𝑟𝑟𝑒𝑓 𝐴 = 𝐼𝑛.

Proof. Either the last row in 𝑟𝑟𝑒𝑓(𝐴) is zero otherwise it contains no zero rows, and 
consequently each of the 𝑛 rows has a leading entry of 1. This implies that each of 
the 𝑛 columns contains a leading 1. Since these leading 1’s occur progressively 
farther to the right as we move down, each of these 1’s must occur on the main 
diagonal.

Definition: If 𝐴 is a square matrix for which there is a matrix of the same size, say 
𝐵, such that 𝐴𝐵 = 𝐵𝐴 = 𝐼 then 𝐴 is called invertible and 𝐵 is called its inverse. If 
we can’t find such a matrix 𝐵, then 𝐴 is called a singular matrix.
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Example: An invertible Matrix

𝐴 =
−2 −1
5 3

 is invertible since B =
−3 −1
5 2

 satisfies:

𝐴𝐵 =
−2 −1
5 3

−3 −1
5 2

=
1 0
0 1

= 𝐼

 𝐵𝐴 =
−3 −1
5 2

−2 −1
5 3

 = 1 0
0 1

= 𝐼

Example: A singular Matrix

𝐴 =
1 2 3
0 0 0
4 5 6

 is singular, because if 𝐵 is any 3 × 3 matrix we must have

 𝐴𝐵 =
∗ ∗ ∗
0 0 0
∗ ∗ ∗

≠ 𝐼

Note : Any matrix with a zero row (or column) is singular.



9/3/2025 MATH 244 - 14471 - Fahd M Alshammari 24

Theorem Inverse is Unique

Proof: Observe that 𝐵 = 𝐵𝐼 = 𝐵 𝐴𝐶 = 𝐵𝐴 𝐶 = 𝐼𝐶 = 𝐶.

Theorem  Invertibility for 2 × 2 Matrices

Example: Calculating the Inverse of a 2 × 2 Matrix

Find the inverse if it exists: a) 𝐴 =
4 2
6 3

.  b) 𝐴 =
−3 −1
4 2

 

Sol: a) Since 4 3 − 2 6 = 0, 𝐴 is singular.

Sol: b) Since −3 2 − −1 4 = −2 ≠ 0, 𝐴 is invertible and 

 𝐴−1 =
1

−2

2 1
−4 −3

=
−1

−1

2

2
3

2

.

If both 𝐵 and 𝐶 are inverses of a matrix 𝐴, then 𝐵 = 𝐶. The inverse is denoted 𝐴−1.

𝐴 =
𝑎 𝑏
𝑐 𝑑

 is invertible 𝑖𝑓𝑓 𝑎𝑑 − 𝑏𝑐 ≠ 0, in which case  𝐴−1 =
1

𝑎𝑑−𝑏𝑐

𝑑 −𝑏
−𝑐 𝑎

.



9/3/2025 MATH 244 - 14471 - Fahd M Alshammari 25

Theorem Solving Linear Systems Using Matrix Inverse

Proof. Substituting 𝑥 = 𝐴−1𝑏 in the equation we get 𝐴𝑥 = 𝐴 𝐴−1𝑏 = 𝐴𝐴−1 𝑏 =

𝐼𝑏 = 𝑏. This shows 𝐴−1𝑏 is a solution. To show it is unique assume 𝑢 is any 
solution, i.e., 𝐴𝑢 = 𝑏. Then multiplying both sides of this equation by 𝐴−1we have 
𝐴−1𝐴𝑢 = 𝐴−1𝑏 ⇒ 𝐼𝑢 = 𝐴−1𝑏 ⇒ 𝑢 = 𝐴−1𝑏. 

If 𝐴 ∈ 𝑀𝑛×𝑛 invertible. The equation 𝐴𝑥 = 𝑏 has the unique solution 𝑥 = 𝐴−1𝑏.

Example Solving Linear Systems Using Matrix Inverse

Use matrix inverse to solve the linear system: 
−3𝑥 − 𝑦 = 1
4𝑥 + 2𝑦 = 0

.

Sol This system is given by  −3 −1
4 2

𝑥
𝑦 =

1
0

. We know

−3 −1
4 2

−1

=
−1

−1

2

−2
3

2

 so the solution is 
𝑥
𝑦 =

−1
−1

2

−2
3

2

1
0

=
−1
−2

.
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• Zero Power of a Matrix 𝐴 ∈ 𝑀𝑛×𝑛 is define by 𝐴0 = 𝐼.

•  A Positive Power of a Matrix 𝐴 ∈ 𝑀𝑛×𝑛, is define by 𝐴𝑚 = 𝐴𝐴 ⋯ 𝐴 (𝑚 factors). 

• For 𝑘, 𝑙 ∈ {0,1,2 … }, We also have 𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙  and (𝐴𝑘)𝑙 = 𝐴𝑘𝑙.

•  A Negative Power of an Invertible Matrix 𝐴 ∈ 𝑀𝑛×𝑛, is defined by

 𝐴−𝑚 = 𝐴−1𝐴−1 ⋯ 𝐴−1 (𝑚 factors).

Power of a Matrix 
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Example  Squaring a Matrix Sum

• If 𝐴, 𝐵 ∈ 𝑀𝑛×𝑛, then (𝐴 + 𝐵)2= 𝐴 + 𝐵 𝐴 + 𝐵 = 𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2

• If further 𝐴𝐵 = 𝐵𝐴, then (𝐴 + 𝐵)2= 𝐴2 + 2𝐴𝐵 + 𝐵2.

Matrix Polynomials If 𝐴 ∈ 𝑀𝑛×𝑛 and 𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚, then define:
𝑝 𝐴 = 𝑎0𝐼 + 𝑎1𝐴 + 𝑎2𝐴2 + ⋯ + 𝑎𝑚𝐴𝑚

Example  Matrix Polynomial

Compute 𝑝(𝐴) where 𝑝 𝑥 = 𝑥2 + 3𝑥 + 2 and 𝐴 =
2 3
1 0

.

Note that if 𝑓 𝑥 = 𝑝 𝑥 𝑞 𝑥  and 𝐴 ∈ 𝑀𝑛×𝑛, then 𝑓 𝐴 = 𝑝 𝐴 𝑞 𝐴 = 𝑞 𝐴 𝑝(𝐴). 
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Theorem: Matrix Inverse Relationship with other operations

Proof: 

𝐴, 𝐵 ∈ 𝑀𝑛×𝑛 invertible. Then
1.  𝐴𝐵 is invertible and (𝐴𝐵)−1= 𝐵−1𝐴−1.
2.  𝐴−1 is invertible and (𝐴−1)−1 = 𝐴.
3.  For 𝑚 ∈ {0,1,2 … }, 𝐴𝑚 is invertible and (𝐴𝑚)−1= 𝐴−𝑚 = (𝐴−1)𝑚.

4.  If 𝑠 ∈ ℝ nonzero scalar, then 𝑠𝐴 is invertible and (𝑠𝐴)−1=
1

𝑠
𝐴−1.

5.  𝐴𝑇  is invertible and (𝐴𝑇)−1= (𝐴−1)𝑇.
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