1.3 Matrices and Matrix Operations

* A matrix is a rectangular array of numbers. The numbers in the array are called
the entries in the matrix.

Aisasizem XnorA € M, «n,.

* |f a matrix A has m rows (horizontal lines) n columns (vertical lines), then we say

Example: Types of Matrices

2
O M
4

9/3/2025

12

row matrix

1

1Xx4

0

— 3]

column matrix
_ 2 X1

2 X4
_\/5

071 17, 00 00
2 ’3’[] 0 0 0 0
0 0 0

Zzero matrix

— 1 X1
row matrix
3X3 X
] column matrix
square matrix

Square matrix
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Matrix General Form:

a a a a
11 12 13 In number of rows: m
a a a a
21 22 23 2n number of columns: n
A=la;]=|ay ay, ay - a €M

" e size:m X n
(7, j)-th entry (or element): (A);;= a;;

| m3 mn _|mxn

Square matrix: m = n

Example: If A = ﬁ ;L _01],then (A),,= 3and (4)3= —1.
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Types of Square Matrices: Amatrix A € M,,«,, is called

 Upper triangular if all entries below its diagonal are O:

* Lower triangular if all its entries above the diagonal are O:

* Diagonal if its both upper and lower triangular:

(A;; = O wheneveri > j)

(A;; = O wheneveri <))

(A;j = 0 whenever i # j)

131,

3],

131,

|

|
|

1 4
0 3/
0 0
6 3|

11 0
0 1/

* Identity if it’s a diagonal matrix with all diagonal entries are 1

9/3/2025
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Equal Matrices:

Two matrices are equal if they have the same size m X n and entries corresponding
to the same position are equal, i.e., Al-j = Bij forl<i<m1<j<n.

Example: Equality of matrices

AR

If A=B, thena=1,b=2,c=3, andd =4
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Addition and Scalar Multiplication: Let 4,5 € M,

We define A + B to be the matrix whose ¢j-th entry is A;; + B;;. In other words,
(A+ B)ij = (A)ij + (B)y

That is, to add two matrices, we add their corresponding entries.

Forany t € R, we define scalar multiplication of A by t to be the matrix whose 2j-th entry is (tA)z-j. In
other words,
(tA)ij = t(A)y;

That is, we multiply a matrix by a scalar by multiplying each entry of the matrix by the scalar.

We define A — B to be the matrix whose 7j-th entry is A;; — B;;. In other words,
(A— B)ij = (A)ij — (B);;
NotethatA — B = A + (—1)B.
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Example: Addition and Scalar Multiplication

- 3 _
letA=1| 2 6 | and B =
| —1 =5 i
Then,
A+B=
and

1+0
24 (—2)
(1) +7

VIA =

3+5
6+ 4
(=5) +(=3)

V2
2v2

V2
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Example: Linear Combination of Matrices

Let A; = L2 1 , Ay = L0l ,and Ag =
3 -1 0 0 1 1

Then the linear combination

1 2 1
2A1—A2—|—A3—2[3 1 0]—|—(—)
2 4 2 ~1
16 =2 0_+[0

4 5 2]

|4 -4 6
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|

1 0 1 3
[0 1 1]+[—2
0 —1]+[3
-1 -1 —2



Theorem: Properties of Addition and scalar Multiplication

ForanyA,B,C € M,,,«, andany s, t € R:

1.A+ B € M,,«,, closed under addition.
.A+ B =B + A, addition is commutative
.(A+B)+C =A+ (B + (), addition is associative
. There exists a zero matrix 0,,,,,, such that 4 + 0,,,, = 4, additive identity.
. There exists a matrix —A € M,,,,, suchthat A + (—A) = 0,,,,,,additive inverse.

.5(tA) = (st)A, scalar multiplication is associative.
. (s + t)A = sA + tA matrix distribution.
.S(A + B) = sA + sB, scalar distribution.

2
3
4
)
6.sA € M,,,«.,, closed under scalar multiplication.
7
8
9
10. 14 = A, scalar multiplicative identity.
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Proof of property 3:

foranyl <7 <mand1l <7 <n,

((A+ B) + C);;

= (A+ B);; + (C);; by definition of addition

= ((A)i; + (B)ij) + (O);; by definition of addition

= (A);; + ((B)ij + (O)i) by associativity of addition of real numbers
= (A)i; + (B+C);; by definition of addition
= (A+ (B+0C));; by definition of addition

And since ((A + B) 4+ C);; = (A + (B + C));; for all applicable ¢ and j, the definition of equality tells us
that( A+ B)+C=A+ (B+C).
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Matrix Multiplication:

Multiplying a row matrix by a column matrix of the same length:

[yl Vo oo ym] =z +y,z,++y,2,]

[1 2 3] 0 |=[1-(=1)+2-0+3-1]=[2]
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Multiplying matrices in general: Let A be m X n and B be n X p matrices.

AB is the m X p matrix found by multiplying every row of A by every column of B. If row; (A4) is the
i"" row of A and col;(B) is the j*" column of B, then

(4B), = row,(4)-col (B) = A,B,; + 4,B, +---+ 4,B, - "
| row,(A)-col (B)  row,(A)-col,(B) - row,(A)-col (B) | m X rL _jn X D
must be
B row,(A)-col (B) row,(A)-col (B) -+ row, (A)-colp (B) o~
: : . : dimensions
row, (4)-col,(B)  row, (4)-coly(B) - row,(A)-col,(B)_ 2 procut

Example: Multiplying matrices
Y

w2 374 3 6] [O O 20+33)] [0 21
1l =5 |1 —2 3|~ |0 O ] - | O ]

11
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Note that:

AB =

* row;(AB) = row;(A) - B

1
Example: AB = [2
* colj(AB) = A - col; (B)
2

1
Example: AB = [

9/3/2025

i row,(4)-B |
row,(A)-B

row, (A)-B_

= [A -col,(B) A-col,(B)
4 1 4
4
0 —I 3
0
2 7 5
4 1 4
4
0 —I
0
2 7 5
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A-col, (B)]
27 30
—4 26
27 30
—4 26

13
12

13
12

|
|

12



Matrix Product as a linear Combination: Let A € M, «,

X
X
2
A| T |=xcol, (A)+ x,col,(A)+---+x,col (A)
an dan Alp X1
s 5k op X2
A= . . . and X =
_aml A2 e amn_ _X,-;_
Then
anXx, + apxy +---+ apx, aj| ap di,
an Xy + anxy +---+ ayx, as| an ay
Ax = . . . =x;| |+ T+ x |
_aml«xl _|' d;p2X2 _|_ e _|' amnxn_ _aml_ _am2_ _af?]'!?_
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Matrix Form of a Linear System

ap Xy + dpXxy +---+ dipXx,

a1 X1 + dx»Xz —+---+ dyXy

9/3/2025

= b

by

Am1 X1 + Am2X2 +--- AmnXn = bm

apy dip c dig
asj dy -+ dyp
| dm1 dm2 - Umn |

ayn X, + apxy +---+ apx,

dx) X1 + danpxy +---+ dypXx,

| A X + An2X2 + -+ AmnXn_

{

b

_b:m
R

X1 b

X2 - bz
X, _b;.,,_

§
Ax=0b
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A: the coefficient matrix
x: the unknown matrix
b: the constant matrix
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Notes:

9/3/2025

We now have four equivalent ways of expressing linear systems.
1. A system of equations:

2581 + 3582 =7
L1 — Lo = H
2. An augmented matrix:
2 3 |7
1 =115

3. A vector equation:

LHREH
L,

Each representation gives us a different way to think about linear systems.
MATH 244 - 14471 - Fahd M Alshammari

4. As a matrix equation:

15



Matrix Product as Column-Row Expansion: IfAism Xnand B
IS n X p matrix.

AB =col (A)-row,(B)+col,(A)-row,(B)+---+col (A)-row, (B)

Example: Column-Row Expansion

5 210 -1 3

Sol. E ;Mé _21 ﬂ::ﬂ[l 2 4]+M[o -1 3]

_[3 6 12] [0 -1 3]_[3 5 15
1510 20| |0 2 6] |5 8 26
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Theorem: Properties of Matrix Multiplication

Let A be an m x n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

A(BC) = (AB)C (associative law of multiplication)
A(B+C)= AB + AC (left distributive law)

(B+C)A=BA+ CA (right distributive law)

r(AB) = (rA)B = A(rB)
for any scalar r

0o O B

e. I, A= A= Al, (identity for matrix multiplication)
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WORNINGS

1. Matrix Multiplication is not commutative, i.e. in general, AB # BA.:

* AB maybe defined and BA may not,e.g.,Ais2 X 3and Bis 3 X 4.
* AB and BA may have different sizes, e.g., Ais2 X 3and Bis 2 X 3.

.[1 2[5 6]:[19 *]7&[5 6”1 2]=[23 *]
3 4117 8 * ok 7 8113 4 x %
2. The product of nonzero matrices can be a zero matrix, i.e., AB=0+# (A= 00r B = 0):
[O 1] [3 4] _ [O 0
0 2110 O 0 O
3. The cancelation law does not hold for matrix multiplication, i.e., AB = AC # B = C:
[—2 3”8 4]=[—2 3”5 —2]=[—1 7 ]
4 —6J15 5 4 —6J13 1 2 —14
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The Transpose of a Matrix A:

A"is the matrix whose columns are the rows of A. Thatis (A");; = 4j;.

Example: Some transposes

a
If A=L

T a
Then A4 —{b

9/3/2025

b} { | | | 1]

B = 1 =3 C =

d 0 4 -3 5 =2 7
1 —3 ]

C T —5 | 0 T | 5

d} B_[z—z; 4] S
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The Trace of a Square Matrix A of size n:

tr(A) is the sum of main diagonal entries of A. Thatis tr(4) = A1 + Ayy + -+ A,

Example: Finding the trace

a b 13 1
y A= , B= , C=|5 3 2|, D
¢ d 0 -1 2

[4].

Then tr(A)=a+d, tr(B)isnotdefined, tr(C)=0, tr(D)=24.
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Theorem: Properties of Transposes

Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. (ANHYI =4

b. (A+B) =A" + BT

c. For any scalar r, (rd4)! = rA”
d. (AB)T = BTAT

Theorem: Properties of Trace

Let A and B be square matrices of the same size.
a. tr(A+B) =tr(4) + tr(B)

b. tr(sAd) = str(4)

c. tr(AT)=tr(4)
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1.4 Inverses, More Algebraic Properties of Matrices

Theorem: If A € M,,,,, then either rref (A) has a row of zeros orrref (4) = I,,.

Proof. Either the lastrow in rref (A4) is zero otherwise it contains no zero rows, and
consequently each of the n rows has a leading entry of 1. This implies that each of
the n columns contains a leading 1. Since these leading 1’s occur progressively

farther to the right as we move down, each of these 1’s must occur on the main
diagonal.

Definition: If A is a square matrix for which there is a matrix of the same size, say
B, suchthat AB = BA = [ then A is called invertible and B is called its inverse. If
we can’t find such a matrix B, then A is called a singular matrix.
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Example: An invertible Matrix

A= [_52 _31] is invertible since B = [_53 _2 ] satisfies:
[-2 -11[-3 -11_1[1 0] _
AB_[S 3”5 2]‘_0 1 =1
[-3 —-11[-2 -11_1[1 o] _
BA_[S 2”5 3]‘_0 1 =1
Example: A singular Matrix
1 2 3
A=10 0 Ofissingular, becauseif B isany 3 X 3 matrix we must have
4 5 6
b3 X *
AB=1|0 0 O0]=-1I
* X *

Note : Any matrix with a zero row (or column) is singular.
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Theorem Inverse is Unique
If both B and C are inverses of a matrix A4, then B = C. The inverse is denoted A~ 1.
Proof: Observe that B = Bl = B(AC) = (BA)C = IC = c.OO

Theorem Invertibility for 2 X 2 Matrices

_l|1a bl|. . . . . ) i 1 _ 1 d —b
A= L d] isinvertible if f ad — bc # 0, in which case A™" = - [—c . ]

Example: Calculating the Inverse of a 2 X 2 Matrix

: : e e 4 2 -3 -1
Find the inverse if it exists: a) A = ’6 3| b)A = [ 4 5 ]
Sol: a) Since (4)(3) — (2)(6) = 0, A is singular.
Sol: b) Since (—-3)(2) — (—1)(4) = =2 # 0, Ais invertible and

-1
1[2 1 ] _ -1 5
-2|1—4 -3 2 '

9/3/2025 MATH 244 - 14471 - Fahd M Alshammari - 24

AT =

N W



Theorem Solving Linear Systems Using Matrix Inverse
If A € M,,,.., invertible. The equation Ax = b has the unique solution x = A~ 1b.

Proof. Substituting x = A™1b in the equation we get Ax = A(A71b) = (AA™1)b =
Ib = b. This shows A~ 'b is a solution. To show it is unique assume u is any

solution, i.e., Au = b. Then multiplying both sides of this equation by A~ 'we have
Al Au=A""b=>lu=4""b=>u=A4A"1.0

Example Solving Linear Systems Using Matrix Inverse
—3x—y=1

Use matrix inverse to solve the linear system: 4x +2y =0

: L -3 =1|(*| |1
Sol This system is given by 4 > 1yl = 1o . We know
x] —1

2 -l 1=, 2 -
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Power of a Matrix

Zero Power of a Matrix A € M,,,.,, is define by A° = 1I.

A Positive Power of a Matrix A € M, ,,, is define by A™ = AA --- A (m factors).

Fork,l € {0,1,2 ...}, We also have A¥A' = A¥*! and (4%)! = A*.

A Negative Power of an Invertible Matrix 4 € M,,,,, is defined by

AT =A"1471... A~ (mfactors).

9/3/2025 MATH 244 - 14471 - Fahd M Alshammari 26



Example Squaring a Matrix Sum

e IfA,B € M,x,,,then (A+ B)°=(A+ B)(A+ B) = A* + AB + BA + B?
* |Iffurther AB = BA, then (A + B)*= A + 2AB + B~.

Matrix Polynomials If A € M., and p(x) = ag + a;x + a,x? + - + a,,x™, then define:
p(A) = agl + a;A + aA% + - + ap A™

Example Matrix Polynomial

Compute p(4) where p(x) = x? +3x+2and A = ﬁ

Note thatif f(x) = p(x)q(x) and A € M,,.,,, then f(A) = p(4)q(4A) = q(A)p(4).
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Theorem: Matrix Inverse Relationship with other operations
A,B € M, ., invertible. Then

1. ABisinvertible and (AB)"'= B71471,

2. A lisinvertibleand (A~1)"! = A.

3. Forme€ {0,1,2 ..}, A™isinvertible and (4A™) 1=

4. If s € Rnonzero scalar, then sA is invertible and (s4) 1=
5

Al isinvertible and (A1) 1= (4A™HT.
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