1.3 Matrices and Matrix Operations

- A **matrix** is a rectangular array of numbers. The numbers in the array are called the entries in the matrix.
- If a matrix A has m rows (horizontal lines) n columns (vertical lines), then we say A is a size $m \times n$ or $A \in M_{m \times n}$.

Example: Types of Matrices

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix}, \quad \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \begin{bmatrix} 4 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$3 \times 2$$

$$3 \times 3$$

$$\text{square matrix}$$

$$3 \times 3$$

$$\text{square matrix}$$

$$3 \times 3$$

$$\text{square matrix}$$

$$\text{Square matrix}$$

Matrix General Form:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}_{m \times n} \in M_{m \times n}$$

number of rows: m

number of columns: n

size: $m \times n$

(i, j)-th entry (or element): $(A)_{ij} = a_{ij}$

Square matrix: m = n

Example: If
$$A = \begin{bmatrix} 2 & 4 & -1 \\ 1 & 3 & 0 \end{bmatrix}$$
, then $(A)_{22} = 3$ and $(A)_{13} = -1$.

Types of Square Matrices: A matrix $A \in M_{n \times n}$ is called

• Upper triangular if all entries below its diagonal are 0:

$$(A_{ij} = 0 \text{ whenever } i > j)$$
 [3], $\begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 5 & 0 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & -1 \end{bmatrix}$

• Lower triangular if all its entries above the diagonal are 0:

$$(A_{ij} = 0 \text{ whenever } i < j)$$
 [3], $\begin{bmatrix} 0 & 0 \\ 6 & 3 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 7 & 0 & -1 \end{bmatrix}$

Diagonal if its both upper and lower triangular:

$$(A_{ij} = 0 \text{ whenever } i \neq j)$$
 [3], $\begin{bmatrix} 11 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• Identity if it's a diagonal matrix with all diagonal entries are 1

$$I_1 = [1], \qquad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \dots$$

Equal Matrices:

Two matrices are equal if they have the same size $m \times n$ and entries corresponding to the same position are equal, i.e., $A_{ij} = B_{ij}$ for $1 \le i \le m$, $1 \le j \le n$.

Example: Equality of matrices

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If A = B, then a = 1, b = 2, c = 3, and d = 4

Addition and Scalar Multiplication: Let $A, B \in M_{m \times n}$

We define A+B to be the matrix whose ij-th entry is $A_{ij}+B_{ij}$. In other words,

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij}$$

That is, to add two matrices, we add their corresponding entries.

For any $t \in \mathbb{R}$, we define scalar multiplication of A by t to be the matrix whose ij-th entry is $(tA)_{ij}$. In other words,

$$(tA)_{ij} = t(A)_{ij}$$

That is, we multiply a matrix by a scalar by multiplying each entry of the matrix by the scalar.

We define A-B to be the matrix whose ij-th entry is $A_{ij}-B_{ij}$. In other words,

$$(A - B)_{ij} = (A)_{ij} - (B)_{ij}$$

Note that A - B = A + (-1)B.

Example: Addition and Scalar Multiplication

Let
$$A=\begin{bmatrix}1&3\\2&6\\-1&-5\end{bmatrix}$$
 and $B=\begin{bmatrix}0&5\\-2&4\\7&-3\end{bmatrix}$.

Then,

$$A+B=egin{bmatrix} 1+0 & 3+5 \ 2+(-2) & 6+4 \ (-1)+7 & (-5)+(-3) \end{bmatrix} = egin{bmatrix} 1 & 8 \ 0 & 10 \ 6 & -8 \end{bmatrix}$$

and

$$\sqrt{2}A = egin{bmatrix} \sqrt{2} & 3\sqrt{2} \ 2\sqrt{2} & 6\sqrt{2} \ -\sqrt{2} & -5\sqrt{2} \end{bmatrix}$$

Example: Linear Combination of Matrices

Let
$$A_1=egin{bmatrix}1&2&1\3&-1&0\end{bmatrix}$$
 , $A_2=egin{bmatrix}1&0&1\0&1&1\end{bmatrix}$, and $A_3=egin{bmatrix}3&1&1\-2&-1&7\end{bmatrix}$.

Then the linear combination

$$egin{aligned} 2A_1-A_2+A_3&=2egin{bmatrix}1&2&1\3&-1&0\end{bmatrix}+(-1)egin{bmatrix}1&0&1\0&1&1\end{bmatrix}+egin{bmatrix}3&1&1\-2&-1&7\end{bmatrix}\ &=egin{bmatrix}2&4&2\6&-2&0\end{bmatrix}+egin{bmatrix}-1&0&-1\0&-1&-1\end{bmatrix}+egin{bmatrix}3&1&1\-2&-1&7\end{bmatrix}\ &=egin{bmatrix}4&5&2\4&-4&6\end{bmatrix} \end{aligned}$$

Theorem: Properties of Addition and scalar Multiplication

For any $A, B, C \in M_{m \times n}$ and any $s, t \in \mathbb{R}$:

- 1. $A + B \in M_{m \times n}$, closed under addition.
- 2. A + B = B + A, addition is **commutative**
- 3. (A + B) + C = A + (B + C), addition is **associative**
- 4. There exists a zero matrix O_{mn} , such that $A + O_{mn} = A$, additive **identity**.
- 5. There exists a matrix $-A \in M_{m \times n}$ such that $A + (-A) = O_{mn}$, additive **inverse**.
- 6. $sA \in M_{m \times n}$, **closed** under scalar multiplication.
- 7. s(tA) = (st)A, scalar multiplication is **associative**.
- 8. (s + t)A = sA + tA matrix distribution.
- 9. s(A + B) = sA + sB, scalar distribution.
- 10. 1A = A, scalar multiplicative identity.

Proof of property 3:

for any $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$((A+B)+C)_{ij}$$
 by definition of addition $= (A+B)_{ij} + (C)_{ij}$ by definition of addition $= (A)_{ij} + (B)_{ij} + (C)_{ij}$ by associativity of addition of real numbers $= (A)_{ij} + (B+C)_{ij}$ by definition of addition $= (A+(B+C))_{ij}$ by definition of addition by definition of addition

And since $((A+B)+C)_{ij}=(A+(B+C))_{ij}$ for all applicable i and j, the definition of equality tells us that (A+B)+C=A+(B+C). \square

Matrix Multiplication:

Multiplying a row matrix by a column matrix of the same length:

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} y_1 z_1 + y_2 z_2 + \cdots + y_m z_m \end{bmatrix}$$

Example: Multiplying a row matrix by a column matrix

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = [1 \cdot (-1) + 2 \cdot 0 + 3 \cdot 1] = [2]$$

Multiplying matrices in general: Let A be $m \times n$ and B be $n \times p$ matrices.

AB is the $m \times p$ matrix found by multiplying every row of A by every column of B. If $row_i(A)$ is the ith row of A and $col_i(B)$ is the jth column of B, then

$$(AB)_{ij} = row_i(A) \cdot col_j(B) = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj}$$

$$AB = \begin{bmatrix} row_1(A) \cdot col_1(B) & row_1(A) \cdot col_2(B) & \cdots & row_1(A) \cdot col_p(B) \\ row_2(A) \cdot col_1(B) & row_2(A) \cdot col_2(B) & \cdots & row_2(A) \cdot col_p(B) \\ \vdots & \vdots & \ddots & \vdots \\ row_m(A) \cdot col_1(B) & row_m(A) \cdot col_2(B) & \cdots & row_m(A) \cdot col_p(B) \end{bmatrix}$$

Example: Multiplying matrices

Note that:

$$AB = \begin{bmatrix} row_1(A) \cdot B \\ row_2(A) \cdot B \\ \vdots \\ row_m(A) \cdot B \end{bmatrix} = \begin{bmatrix} A \cdot col_1(B) & A \cdot col_2(B) & \cdots & A \cdot col_p(B) \end{bmatrix}$$

• $row_i(AB) = row_i(A) \cdot B$

$$AB = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

• $col_i(AB) = A \cdot col_i(B)$

$$AB = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

Matrix Product as a linear Combination: Let $A \in M_{m \times n}$

$$A\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 col_1(A) + x_2 col_2(A) + \dots + x_n col_n(A)$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Then

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Matrix Form of a Linear System

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

$$\begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \qquad \vdots \qquad \vdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$Ax = b$$

A: the coefficient matrix

x: the unknown matrix

b: the constant matrix

Notes:

We now have four equivalent ways of expressing linear systems.

1. A system of equations:

$$2x_1 + 3x_2 = 7$$
$$x_1 - x_2 = 5$$

2. An augmented matrix:

$$\begin{bmatrix} 2 & 3 & 7 \\ 1 & -1 & 5 \end{bmatrix}$$

3. A vector equation:

$$x_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_{2} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

4. As a matrix equation:

$$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

Each representation gives us a different way to think about linear systems.

Matrix Product as Column-Row Expansion: If A is $m \times n$ and B is $n \times p$ matrix.

$$AB = col_1(A) \cdot row_1(B) + col_2(A) \cdot row_2(B) + \dots + col_n(A) \cdot row_n(B)$$

Example: Column-Row Expansion

Find the column-row expansion of the product $AB = \begin{vmatrix} 3 & 1 & 1 & 2 & 4 \\ 5 & 2 & 0 & -1 & 3 \end{vmatrix}$

Sol.
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 6 & 12 \\ 5 & 10 & 20 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 3 \\ 0 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 15 \\ 5 & 8 & 26 \end{bmatrix}$$

Theorem: Properties of Matrix Multiplication

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

(associative law of multiplication)

b.
$$A(B+C) = AB + AC$$

(left distributive law)

c.
$$(B+C)A = BA + CA$$

(right distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.
$$I_m A = A = A I_n$$

(identity for matrix multiplication)

WORNINGS

- 1. Matrix Multiplication is **not commutative**, i.e. in general, $AB \neq BA$:
 - AB maybe defined and BA may not, e.g., A is 2×3 and B is 3×4 .
 - AB and BA may have different sizes, e.g., A is 2×3 and B is 2×3 .

2. The product of nonzero matrices can be a zero matrix, i.e., $AB = 0 \Rightarrow (A = 0 \text{ or } B = 0)$:

$$\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3. The cancelation law does not hold for matrix multiplication, i.e., $AB = AC \Rightarrow B = C$:

$$\begin{bmatrix} -2 & 3 \\ 4 & -6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 4 & -6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 7 \\ 2 & -14 \end{bmatrix}$$

The Transpose of a Matrix *A*:

 A^T is the matrix whose columns are the rows of A. That is $(A^T)_{ij} = A_{ji}$.

Example: Some transposes

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$

Then
$$A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
, $B^T = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$, $C^T = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$

The Trace of a Square Matrix A of size n:

tr(A) is the sum of **main diagonal** entries of A. That is $tr(A) = A_{11} + A_{22} + \cdots + A_{nn}$.

Example: Finding the trace

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 3 & 5 \\ 5 & -3 & 2 \\ 4 & 0 & 2 \end{bmatrix}, \quad D = [4].$$

Then

$$\operatorname{tr}(A) = a + d,$$

tr(A) = a + d, tr(B) is not defined, tr(C) = 0, tr(D) = 4.

$$tr(C) = 0$$
, tr

Theorem: Properties of Transposes

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- a. $(A^{T})^{T} = A$
- b. $(A + B)^T = A^T + B^T$
- c. For any scalar r, $(rA)^T = rA^T$
- d. $(AB)^T = B^T A^T$

Theorem: Properties of Trace

Let A and B be square matrices of the same size.

- a. tr(A+B) = tr(A) + tr(B)
- b. tr(sA) = str(A)
- c. $tr(A^T) = tr(A)$

1.4 Inverses, More Algebraic Properties of Matrices

Theorem: If $A \in M_{n \times n}$, then either rref(A) has a row of zeros or $rref(A) = I_n$.

Proof. Either the last row in rref(A) is zero otherwise it contains no zero rows, and consequently each of the n rows has a leading entry of 1. This implies that each of the n columns contains a leading 1. Since these leading 1's occur progressively farther to the right as we move down, each of these 1's must occur on the main diagonal.

Definition: If A is a square matrix for which there is a matrix of the same size, say B, such that AB = BA = I then A is called invertible and B is called its inverse. If we can't find such a matrix B, then A is called a singular matrix.

Example: An invertible Matrix

$$A = \begin{bmatrix} -2 & -1 \\ 5 & 3 \end{bmatrix}$$
 is invertible since $B = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}$ satisfies:

$$AB = \begin{bmatrix} -2 & -1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$BA = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} -2 & -1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Example: A singular Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$
 is singular, because if B is any 3×3 matrix we must have

$$AB = \begin{bmatrix} * & * & * \\ 0 & 0 & 0 \\ * & * & * \end{bmatrix} \neq I$$

Note: Any matrix with a zero row (or column) is singular.

Theorem Inverse is Unique

If both B and C are inverses of a matrix A, then B = C. The inverse is denoted A^{-1} .

Proof: Observe that $B = BI = B(AC) = (BA)C = IC = C.\square$

Theorem Invertibility for 2×2 Matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible $iff\ ad - bc \neq 0$, in which case $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Example: Calculating the Inverse of a 2×2 Matrix

Find the inverse if it exists: a)
$$A = \begin{bmatrix} 4 & 2 \\ 6 & 3 \end{bmatrix}$$
. b) $A = \begin{bmatrix} -3 & -1 \\ 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} -3 & -1 \\ 4 & 2 \end{bmatrix}$$

Sol: a) Since (4)(3) - (2)(6) = 0, A is singular.

Sol: b) Since $(-3)(2) - (-1)(4) = -2 \neq 0$, A is invertible and

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 2 & 1 \\ -4 & -3 \end{bmatrix} = \begin{bmatrix} -1 & \frac{-1}{2} \\ 2 & \frac{3}{2} \end{bmatrix}.$$

Theorem Solving Linear Systems Using Matrix Inverse

If $A \in M_{n \times n}$ invertible. The equation Ax = b has the unique solution $x = A^{-1}b$.

Proof. Substituting $x = A^{-1}b$ in the equation we get $Ax = A(A^{-1}b) = (AA^{-1})b = Ib = b$. This shows $A^{-1}b$ is a solution. To show it is unique assume u is any solution, i.e., Au = b. Then multiplying both sides of this equation by A^{-1} we have $A^{-1}Au = A^{-1}b \Rightarrow Iu = A^{-1}b \Rightarrow u = A^{-1}b$. \square

Example Solving Linear Systems Using Matrix Inverse

Use matrix inverse to solve the linear system: $\frac{-3x - y = 1}{4x + 2y = 0}$.

Sol This system is given by $\begin{bmatrix} -3 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. We know

$$\begin{bmatrix} -3 & -1 \\ 4 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & \frac{-1}{2} \\ -2 & \frac{3}{2} \end{bmatrix}$$
so the solution is
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & \frac{-1}{2} \\ -2 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}.$$

Power of a Matrix

- Zero Power of a Matrix $A \in M_{n \times n}$ is define by $A^0 = I$.
- A Positive Power of a Matrix $A \in M_{n \times n}$, is define by $A^m = AA \cdots A$ (m factors).
- For $k, l \in \{0,1,2,...\}$, We also have $A^k A^l = A^{k+l}$ and $(A^k)^l = A^{kl}$.
- A Negative Power of an Invertible Matrix $A \in M_{n \times n}$, is defined by

$$A^{-m} = A^{-1}A^{-1} \cdots A^{-1}$$
 (*m* factors).

Example Squaring a Matrix Sum

- If $A, B \in M_{n \times n}$, then $(A + B)^2 = (A + B)(A + B) = A^2 + AB + BA + B^2$
- If further AB = BA, then $(A + B)^2 = A^2 + 2AB + B^2$.

Matrix Polynomials If $A \in M_{n \times n}$ and $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$, then define: $p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m$

Example Matrix Polynomial

Compute
$$p(A)$$
 where $p(x) = x^2 + 3x + 2$ and $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$.

Note that if f(x) = p(x)q(x) and $A \in M_{n \times n}$, then f(A) = p(A)q(A) = q(A)p(A).

Theorem: Matrix Inverse Relationship with other operations

 $A, B \in M_{n \times n}$ invertible. Then

- 1. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- 3. For $m \in \{0,1,2,...\}$, A^m is invertible and $(A^m)^{-1} = A^{-m} = (A^{-1})^m$.
- 4. If $s \in \mathbb{R}$ nonzero scalar, then sA is invertible and $(sA)^{-1} = \frac{1}{s}A^{-1}$.
- 5. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Proof: