King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2025 (2nd Sem. 1445H)

Chapter 3. Information Input and Processing Part – 4: Signal Detection Theory

Prepared by: Ahmed M. El-Sherbeeny, PhD

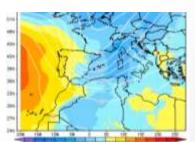
Chapter Overview Information Processing and Compatibility

- 1. Information Display Coding (Ch. 3)
- 2. Fitts' Law (Ch. 3, Ch. 9)
- 3. Hick Hyman Law (Ch. 3)
- 4. Signal Detection Theory (Ch. 3)
- 5. Memory Attention (Ch. 3)

7. Compatibility - Part 2 - Movement - Modality Compatibility (Ch. 10, Ch.3)

Contents

- Overview of Signal Detection Theory (SDT)
 - o What is Signal Detection Theory (1954)?
 - theory predicting how/when we detect:
 - the presence of a faint stimulus ("signal"),
 - in the presence of background stimulation ("noise")
 - i.e. no single "absolute threshold" for a signal


John A. Swets

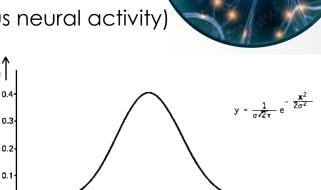
- o Involves situations where:
 - Two discrete situations exist: signal / no signal
 - Situations cannot be easily discriminated

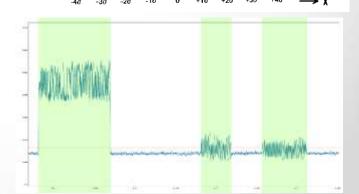
- Detecting cavity on tooth x-ray
- Detecting defective component in a factory
- Detecting rain in weather forecast

- Concepts Associated with SDT:
 - 1. Concept of noise
- 2. Possible outcomes
- 3. Concept of response criterion
- 4. Influencing the response criterion
- 5. Concept of sensitivity
- 6. Applications of SDT

1. Concept of Noise

- o Nature of Noise:
 - Involved with any situation
 - Interferes with detection of signal



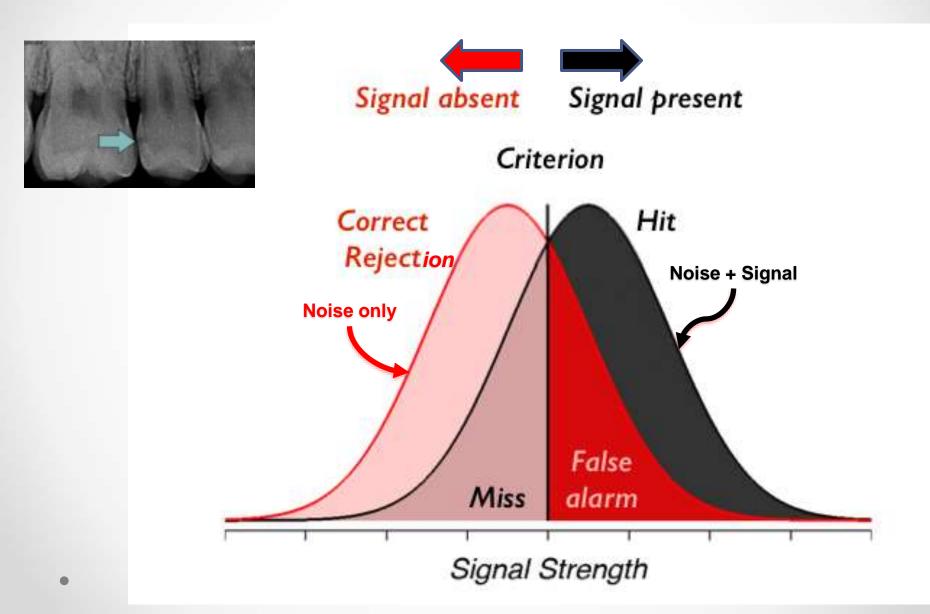

- Externally (e.g. noises in a factory vs. warning buzzer)
- Internally: within person (e.g. miscellaneous neural activity)

- Intensity varies from low to high with time
- Forms normal (bell-shaped) distribution
- o When "signal" occurs:
 - Intensity is added to background noise
 - Person must decide if input (what s/he senses) consists of:
 - o Only noise, or
 - o Noise + signal

2. Possible Outcomes

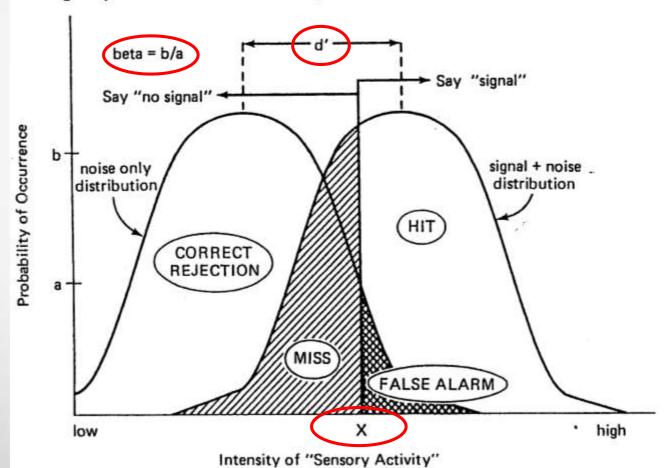
- o First note the following:
 - Person must decide: signal occurred / did not occur (2 possibilities)
 - There are two realities: signal did occur / did not occur
- o Thus, there are four possible outcomes:
 - Hit (aka true positive): saying "signal" where there is signal
 - False Alarm (FA, aka false positive): saying "signal"/there's no signal
 - Miss (aka false negative): saying "no signal" / there is signal
 - Correct Rejection (CR, aka true negative): saying "no signal" / there's no signal

Dasmana	Signal	nal		
Response	Yes	No		
Yes	s/y	s/n		
No	ns/y	ns/n		



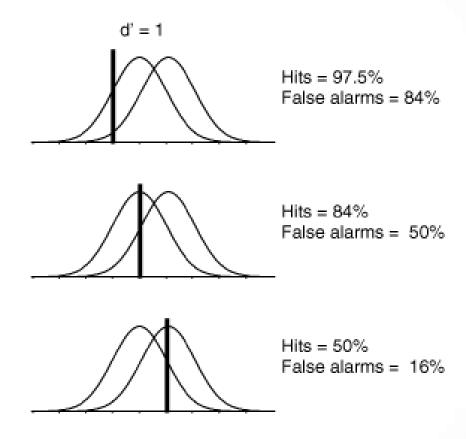
Daggerage	Signal				
Response	Yes	No			
Yes	HIT	FA			
No	MISS	CR			

•8

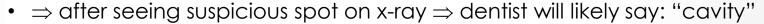

3. Concept of Response Criterion

- SDT helps with understanding how detection process works
- Basis of SDT:
 - People set criterion along "hypothetical continuum of sensory activity"*
 - People then use this as a basis for making their decisions
 - We then find out position of criterion along continuum
 - This determines probability of four outcomes (<u>last slide</u>)
 - This process is illustrated in next slide (<u>Figure 3-3</u>)
 - Try also this SDT interactive learning tool:
 https://eshedmargalit.com/dprime_calculator/
- Notes regarding Figure 3-3:
 - Figure shows hypothetical distributions of sensory activity in cases:
 - Only noise is present
 - Signal is added to noise
 - The two distributions (noise and signal + noise overlap)
 - ⇒ noise level alone may be > signal + noise (in which case?)

FIGURE 3-3


Illustration of the key concepts of signal detection theory. Shown are two hypothetical distributions of internal sensory activity, one generated by noise alone and the other generated by signal plus noise. The probabilities of four possible outcomes are depicted as the respective areas under the curves based on the setting of a criterion at X. Here d' is a measure of sensitivity, and beta is a measure of response bias. The letters a and b correspond to the height of the signal-plus-noise and noise-only distributions at the criterion.

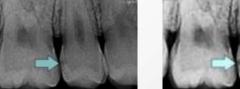
3. Cont. Concept of Response Criterion (RC)


- SDT assumes person sets criterion, such that when:
 - Level of sensory activity > set criterion ⇒ person says: "signal present"
 - Level of sensory activity < set criterion ⇒ person says: "no signal"
 - Probabilities of four outcomes determined based on criterion (<u>Figure</u>)
- Quantity "beta" (aka response criterion / response bias)
 - Based on <u>position of criterion</u>
 - beta = b/a
 - i.e. beta is ratio of signal: noise, or ratio of height of 2 curves @ criterion
 - Values of beta (see next slide)
 - Beta = 1, when two distributions <u>intersect</u> (can you show this?)
 - o When criterion is shifted to right ⇒
 - Beta increases (i.e. > 1.0)
 - Person says "signal" less ⇒ hits ↓, but also FA ↓
 - Person is considered: "conservative"
 - When criterion is shifted to left ⇒
 - Beta decreases (i.e. < 1.0)
 - Person says "signal" more ⇒ hits ↑, but also FA ↑
 - Person is considered: "risky" (aka "liberal")*

Effect of changing beta criterion (constant d')

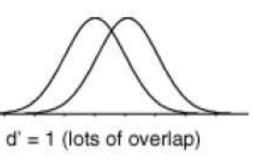
4. Influencing the Response Criterion

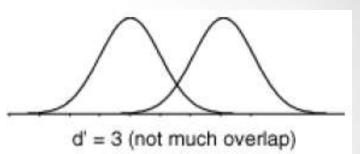
- Two variables affect setting the criterion
 - 1. Probability of detecting a signal
 - 2. Costs and benefits associated with 4 possible outcomes
- 1. Probability of detecting a signal:
 - e.g. If you told dentist tooth was hurting you ⇒
 - Probability that you have cavity ↑

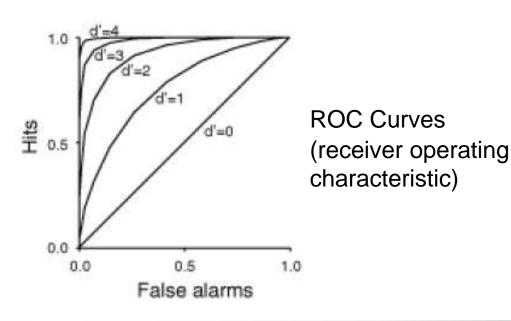

- \Rightarrow <u>criterion</u> \downarrow (i.e. beta \downarrow) \Rightarrow i.e. dentist can make "risky" assessment
- 2. Costs and benefits associated with 4 possible outcomes
 - What is cost of false alarm (saying "cavity", when there's no cavity)?
 - ⇒ tooth gets drilled without need
 - What is cost of miss (saying "no cavity", when there is cavity)?
 - $\circ \Rightarrow$ cavity worsens \Rightarrow may lose tooth
 - So, what should dentist do? (i.e. after weighing costs?)
 - Most likely: set low criterion ⇒ call suspicious spot: "cavity"
 - o But what if you go regularly? \Rightarrow he will be more conservative (why?)* \Rightarrow will set a high criterion, and will not call it "cavity"

5. Concept of Sensitivity

- What is sensitivity? It is keenness / resolution of sensory system
- RC vs. sensitivity in SDT: they are both independent of each other
- How to measure sensitivity (aka: d')
 - Sensitivity: d' = separation between 2 distributions (see <u>Figure 3-3</u>)
 - Measured in units of standard deviation: (aka <u>Z-score</u> or <u>calculator</u>)
 - SD's of 2 distributions are assumed equal
 - As <u>separation</u> $\uparrow \Rightarrow$ sensitivity $\uparrow \Rightarrow d' \uparrow$ (note, best to have high d' *)
 - Most applications: d' = [0.5 2] (see next slide)
- Factors affecting d'
 - 1. Some signal systems have more noise than others, thus:
 - \circ As noise $\uparrow \Rightarrow d' \downarrow$
 - o Also note, as signal $\downarrow \Rightarrow d' \downarrow$ (can you show this on <u>Figure 3-3</u>?)
 - 2. Ability of people to memorize physical characteristics of signal
 - \circ Memory aids $\Rightarrow d' \uparrow$
 - o e.g. for dentist: $d' \uparrow by$:
 - Using better x-ray equipment




5. Cont. Concept of Sensitivity


Effect of changing d'

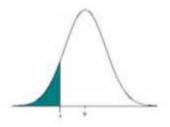
$$d' = z(Hits) - z(False Alarms)$$

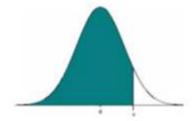
$$d' = Z_{HR} - Z_{FAR}$$

• 16

6. Applications of SDT

- o Many <u>practical applications</u> (from various studies):
 - Sonar target applications
 - Industrial inspection tasks
 - Medical Diagnosis
 - Forensic science
 - Eye witness testimony
 - Air traffic control
 - Weather forecasting




Reservations

- SDT should not be accepted without criticism (use with "grain of salt")
 - Using in some situations may ⇒ invalid results
- Reasons:
 - Theory developed in lab (controlled conditions/experiments)
 - Subjects given many, many trials
 - Controlled signals and background noise levels
 - Some applications don't match these conditions

Table of Standard Normal Probabilities for Negative Z-scores

Table of Standard Normal Probabilities for Positive Z-scores

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	6,0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0,0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-23	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.103K	0.1020	0.1003	0.0985
-1.3	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2905	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0,4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

2.	0.00	10.0	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0,0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
1.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0,7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
3.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
1.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
(0.1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
0.5	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9903	0.9808	0.9812	0.9817
1.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9895	0.9896	0.9896	0.9901	0.9904	0.9906	0,9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9990	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	().9997	0.9997	0.9997	0.9997	0.9997	0.9998

Note that the probabilities given in this table represent the area to the LEFT of the z-score.

The area to the RIGHT of a z-score = 1 - the area to the LEFT of the z-score

Videos

- Watch these videos on Signal Detection Theory:
 - Basics and Some Examples
 https://youtu.be/QjF8QP2bf9Q?si=CdqLE3aHeQyg3vsE
 - Basics and Medical Application:
 https://youtu.be/W3LF0BMNgVI?si=MyLl_mG2yedHxKEY
 - How to Calculate the Z-Score:
 https://youtu.be/2tuBREK_mgE?si=NRMhkly_M_COQRbQ

References

- Human Factors in Engineering and Design. Mark S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3
- An interactive tool for learning about signal detection theory https://eshedmargalit.com/dprime_calculator/
- Z-score and Probability <u>Converter</u>
- Web Interface for Statistics Education (WISE) Signal Detection: Overview http://wise.cgu.edu/wise-tutorials/tutorial-signal-detection-overview-2/