King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2024 (2nd Sem. 1445H)

Chapter 3. Information Input and Processing

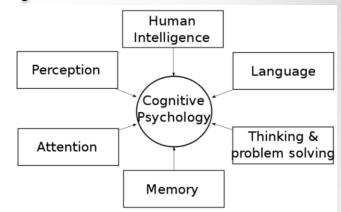
Part – 3: Choice Reaction Time Experiments

Prepared by: Ahmed M. El-Sherbeeny, PhD

Chapter Overview Information Processing and Compatibility

- 1. Information Display Coding (Ch. 3)
- 2. Fitts' Law (Ch. 3, Ch. 9)
- 3. Hick Hyman Law (Ch. 3)
- 4. Signal Detection Theory (Ch. 3)
- 5. Memory Attention (Ch. 3)

7. Compatibility - Part 2 - Movement - Modality Compatibility (Ch. 10, Ch.3)

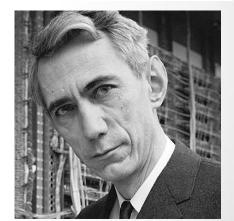

Contents

- Information Theory
 - Unit of Measure of Information
- Reaction Time Experiments
 - 1. Simple reaction time tasks (SRT)
 - 2. Choice response time tasks (CRT) Hick's Law
 - 3. Hick-Hyman Law
- Summary

Information Theory

Information Theory

- Information Processing is AKA:
 - Cognitive Psychology
 - Cognitive Engineering
 - Engineering Psychology



Objectives of Information Theory:

- Finding an operational definition of information (1948)
- Finding a method for measuring information
- Note, most concepts of Info. Theory are descriptive (i.e. qualitative vs. quantitative)

Information (Definition):

- "Reduction of Uncertainty"
- Emphasis is on "highly unlikely" events
- Example (information in car):
 - "Fasten seat belt": likely event ⇒ not imp. in Info. Th.
 - "Temperature warning": unlikely event ⇒ imp.

Claude Shannon

Unit of Measure of Information

Case 1: ≥ 1 equally likely alternative events:

$$H = \log_2 N = \frac{\log N}{\log 2}$$

H: amount of information [Bits]

N: number of equally likely alternatives

o e.g.: 2 equally likely alternatives $\Rightarrow H = \log_2 2 = 1$

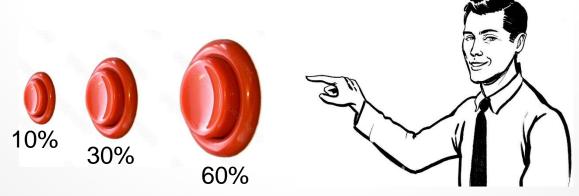
⇒ **Bit** (Defⁿ): "amount of info. to decide between **two** equally likely (i.e. 50%-50%) alternatives"

o e.g.: 4 equally likely alternatives $\Rightarrow H = \log_2 4 = 2$

o e.g.: equally likely digits (0-9) $\Rightarrow H = \log_2 10 = 3.32$

o e.g.: equally likely letters (a-z) $\Rightarrow H = \log_2 26 = 4.70$

Note, for each of above, unit [bit] must be stated.


Cont. Unit of Measure of Information

Case 2: ≥ 1 non-equally likely alternatives:

$$h_i = \log_2 \frac{1}{p_i}$$

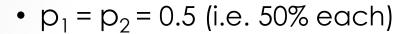
- $_{\circ}\,h_{i}$: amount of information [Bits] for single event, i
- $_{\circ} \mathcal{P}_{i}$: probability of occurrence of single event, i
- Note, this is not usually significant

(i.e. for individual event basis)

• 7

Cont. Unit of Measure of Information

 Case 3: Average info. of non-equally likely series of events: N


$$H_{av} = \sum_{i=1}^{\infty} p_i \left(\log_2 \frac{1}{p_i} \right)$$

- $\circ H_{av}$: average information [Bits] from all events
- $_{\circ} p_{i}$: probability of occurrence of single event, i
- N: num. of non-equally likely alternatives/events
- \circ e.g.: 2 alternatives (N=2)
 - Enemy attacks by land, $p_1 = 0.9$
 - Enemy attacks by sea, $p_2 = 0.1$

$$\overset{\Rightarrow}{H}_{av} = \sum_{i=1}^{2} p_i \left(\log_2 \frac{1}{p_i} \right) = p_1 \left(\log_2 \frac{1}{p_1} \right) + p_2 \left(\log_2 \frac{1}{p_2} \right) \\
= 0.9 \left(\log_2 \frac{1}{0.9} \right) + 0.1 \left(\log_2 \frac{1}{0.1} \right) = 0.47 \quad \bullet 8$$

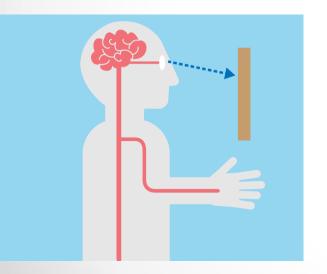
Cont. Unit of Measure of Information

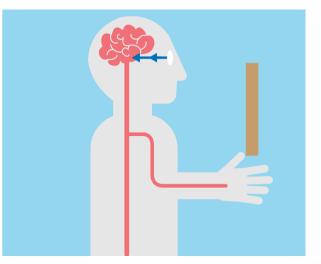
- Case 4: Redundancy:
 - o If 2 occurrences: equally likely ⇒

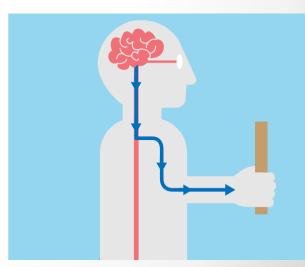
•
$$\Rightarrow H = H_{\text{max}} = 1$$

$$\bullet = 1 - 0.47 = 0.53 = 53\%$$

- $_{\circ}$ % Redundancy = $\left(1 \frac{H_{av}}{H_{max}}\right) * 100$
- \circ Note, as departure from equal prob. ↑ \Rightarrow %Red. ↑
- o e.g.: not all English letters equally likely: "th", "qu"
 - ⇒ %Red. of English language = 68 %
 - ps. how about Arabic language?

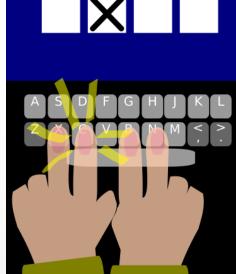

kh-aa	H-aa	j-eem	th-aa	t-aa 亡	b-aa •	a-lif
S-aad	sh-een	s-een w	z-aa j	r-aa	dh-aal	d-aal
q-aaf	f-aa	gh-ain	3-ain	Dh-aa	T-aa	D-aad ض
y-aa Ç	w-aaw 9	h-a	n-oon	m-eem	I-aam	k-aaf ک




Reaction Time Experiments

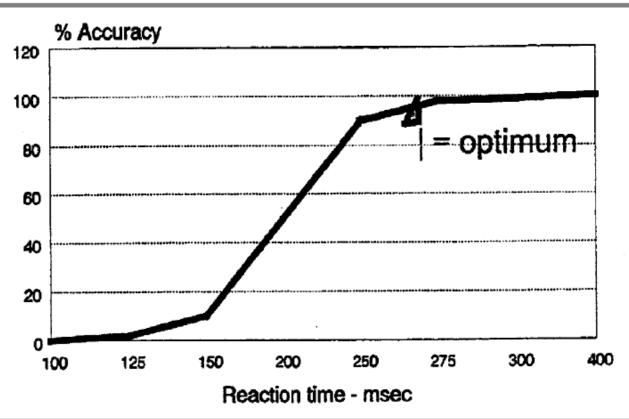
Reaction Time Experiments

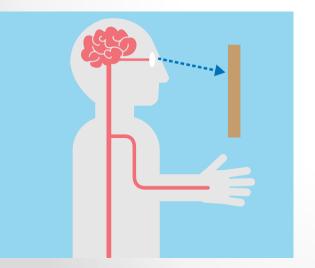

- Important information theory applications:
 - 1. Simple reaction time tasks (SRT)
 - 2. Choice response time tasks (CRT) or Hick's Law
 - 3. Hick-Hyman Law

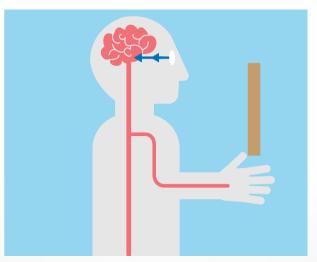


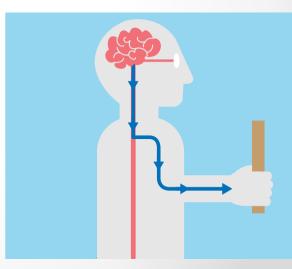
- 1. Simple Reaction Time Tasks (SRT)
 - Used to test how fast human responds in presence of 1 stimulus
 - e.g. starting to run when hearing starting gun in a race, or moving car when traffic light is green, etc.
 - try experiment (aka Deary-Liewald task):
 as fast as you see icon on screen, press <u>'space bar'</u>:
 - Note, how this tests has two aspects:
 - Correct response rate
 - How fast you respond (ms)
 - o How much did you score?
 - Experiment shows: humans can score for 1 choice: $< 200 \, ms$
 - How much do you expect when there is more than one choice?

- 2. Choice Response Time task (ČRT)
 - Used to test how fast human responds in presence of more than 1 stimulus, i.e. multiple stimuli
 - o e.g. choosing a digit on keyboard from '0' to '9'
 - Each stimulus requires a different response
 - o In general, more stimuli/responses ⇒ slower RT
 - try 2nd experiment:
 there are now 4 blocks (choices), with 'X' appearing in either of 4 possible positions (i.e. 4 stimuli)
 - As fast as you see 'X' come on, press letter on keyboard that corresponds to it
 - Note how RT/error rate are now greater


- 2. Cont. Choice Response Time task (CRT)
 - Simplest CRT experiment: 2 stimuli/responses ⇒
 - Minimum RT = 250 ms
 - Typical average: $350 450 \, ms$
 - Note, results greatly affected by type of stimulus & response mode (e.g. verbal/ written/ physical, etc.)*
 - Also, response speed proven to be affected greatly by:


- Age
- Intelligence
- Conditions (e.g. rested vs. tired, hungry or not, etc.)
- Speed-accuracy tradeoff (i.e. your aim to make less mistakes or higher speed)


• 14


Speed-accuracy tradeoff

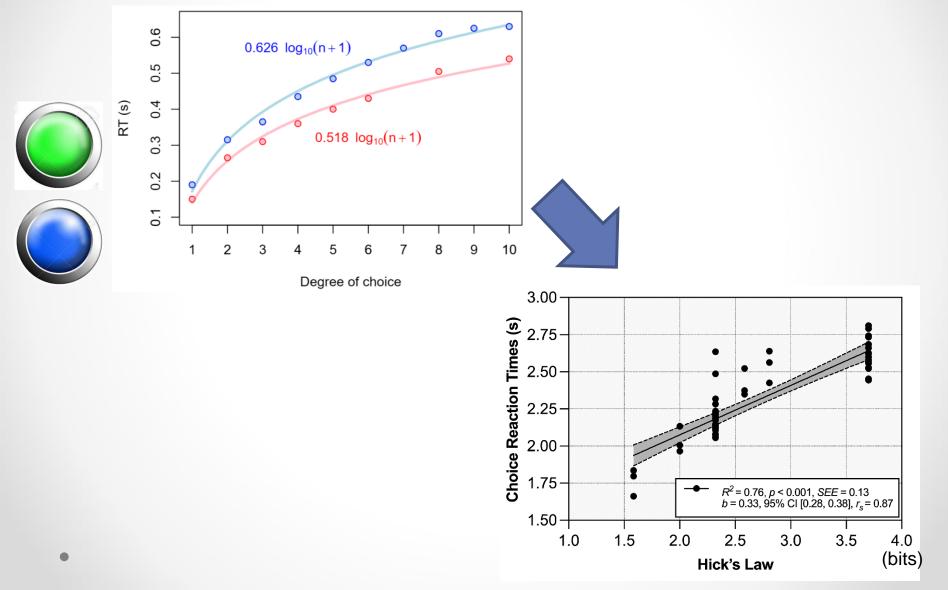
- 2. Cont. Choice Response Time task (CRT)
 - o So what is significance of measuring CRT?
 - RT is indication of time required to
 - Process/interpret information (i.e. stimuli)
 - Retrieve information from memory
 - Initiate muscle responses
 - i.e. gives good indication of time required to "think" (basic thought process)
 - This is important part of "cognitive psychology" field

Hick's and Hick-Hyman Laws

3. Hick's Law

- Named after British psychologist William E. Hick
- o Conducted experiments on CRT in 1950's
- o He found (1952):

- i.e. RT vs. # <u>stimuli in Bits</u>: **linear function** (amazing find!)
- Given *n* equally likely choices, \overline{RT} (T) required to choose among the choices is:

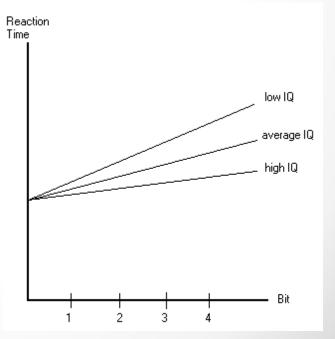

$$T = b \cdot \log_2(n+1)$$

where,

b: empirical constant (determine from data for person) Note how log_2 indicates how "binary" search is performed Also, note how "+1" is used to account for 1 choice*

Hick's and Hick-Hyman Laws

3. Cont. Hick's Law



Cont. Choice Reaction Time Experiments

- 3. Cont. Hick's Law
 - More recent research (E. Roth, 1964):
 RT affected by IQ
 - o Time (T) required to make a decision, $T = \log_2 n / (Processing Speed)$
 - Example/summary of Hick's law is shown below

Also, note how this indicates that we don't think equally

of all alternatives (we tend to cancel out ½ alternatives every time we think, as indicated by eqn)

Cont. Choice Reaction Time Experiments

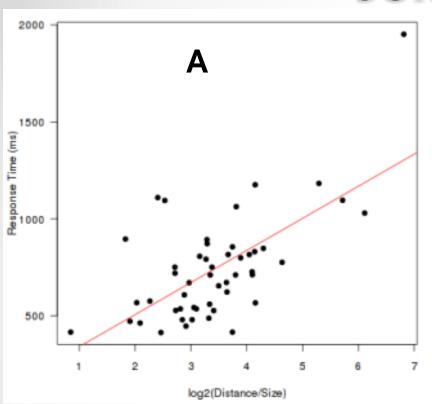
3. Hick-Hyman Law (1953):

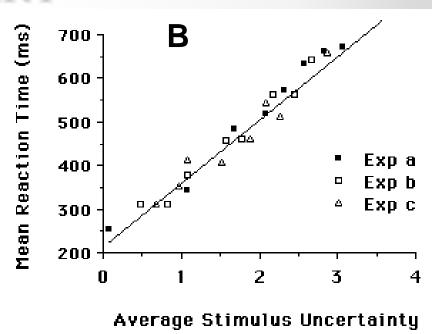
 Hick's law further analyzed by US psychologist: Ray Hyman

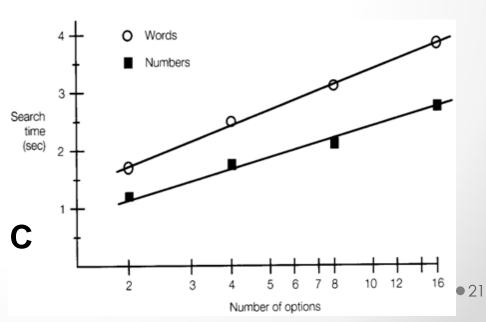
- Kept number of stimuli (alternatives) fixed
- Varied prob. of occurrence of events/choices (e.g. size of targets) ⇒ law is generalized as follows:

$$T = b \cdot H$$

$$H = \sum_{i}^{n} p_{i} \log_{2} \left(\frac{1}{p_{i}} + 1 \right)$$


- He found: "Hick-Hyman Law"
 - AGAIN: Reaction time vs. Stimulus (in Bits): linear function!
- o Compare Hick, Hick-Hyman, Fitts's Laws in next slide





SUMMARY

Videos

- Watch the following videos (applications in HCI):
 - https://youtu.be/ttw5nditisQ?si=BZSRb5LfZyST0anT
 - Hick-Hyman Law:
 https://youtu.be/558s2nkmdA4?si=E6m1hhhYGr_yWhST

References

- Human Factors in Engineering and Design. Mark S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.
- Simple and choice reaction time tasks. From:
 PsyToolkit. Available at:
 http://www.psytoolkit.org/lessons/simple_choice
 rts.html
- For more simple reaction time tasks:
 https://www.humanbenchmark.com/tests/reactiontime
- Hick's law. From Wikipedia, the free encyclopedia. Available at:
 https://en.wikipedia.org/w/index.php?title=Hick %27s_law&redirect=no

• 23