

King Saud University

Department of Mathematics

2nd Semester 1435-1436 H

MATH 225 (Differential Equations)

1st Midterm Exam

Duration: 90 Minutes

Student's	Name:	

Question Number	ı	II	III	Total
Mark				

Question I: Choose the correct answer

- (1) The differential equation $xy\frac{d^5y}{dx^5} + \sqrt{x+y}\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^6 = 0$ is of
- (a) order 5 and nonlinear

- (b) order 6 and nonlinear (c) order 5 and linear (d) None of the previous
- (2) The value of k that makes $k(y^2 + 2x)dx + (4y 6xy) dy = 0$ exact is
 - (a) -6

- (b) 6
- (c) -3

(d) None of the previous

- (3) The function $f(x, y) = \frac{\sqrt{x^2 + xy}}{x^5 + y^4 x}$ is homogeneous of degree
 - (a) 4

- (b) -4

- (d) None of the previous
- (4) To solve the differential equation $x \frac{dy}{dx} + 5y = 9x^2y^{-2}$ we use the substitution
- (a) $u = y^3$
- (b) $u = y^{-3}$ (c) $u = \frac{y^{-2}}{y}$
- (d) None of the previous
- (5) The one parameter family of solutions for $\frac{dy}{dx} = y^2 4$ is $y = 2(\frac{1 + ce^{4x}}{1 ce^{4x}})$. The solution y = 2 for this differential equation is a
- (a) trivial solution (b) member of the family of solutions (c) singular solution (d) None of the previous

Question II: A. Determine the region of the xy - plane for which the differential equation has a unique solution dy

$$\frac{dy}{dx} = xln(y+2)$$

B. Find the integrating factor for the following linear differential equation

$$xdy + (3+3y-x)dx = 0.$$

Question III: A. Solve the following differential equations:

$$(xy^2 - cosxsinx)dx + y(x^2 - 1)dy = 0$$

$$\frac{dy}{dx} = \tan(y - x + 2) + 1$$

B. Solve the Initial Value Problem

$$xdx + (y - 2x)dy = 0,$$
 $y(1) = 0.$

Good Luck ☺