BCH 312

Biochemical
 Calculations [Practical]

Nora Aljebrin

Office: Building 5, $3^{\text {rd }}$ floor, 5T267
Website: www.fac.ksu.edu.sa/naljebrin
E.mail: naljebrin@ksu.edu.sa

Mark Distribution

- Report [5 Marks]

■ Quiz [7Marks]

- Final [13 Marks, 8 for practical and 5 for theoretical]
- Final exam date:

■ Monday 30/2/1435H - 22/12/2014

Identification of
 Glassware, pH meter, and Spectrophotometer

Objectives

- Identify different glassware and the accuracy of them
- To be familiar with the use of pipetting technique
- To learn how to handle the pH meter and to measure pH values
- To learn how to handle the spectrophotometer

Glassware

■ Volumetric flask

- It is used for preparing large amounts of standard solutions and reagents that require highly accurate concentrations.
- The most common volumes are 250, 500 ,1000 , and 2000 ml . However smaller volumes are available such as 100, 50, 25, and even 1,2, and 5 ml .

Ehrlenmeyer flasks

- This type of flask is a conical container with multiple volume markings that sever as estimate of volume and is available in a variety of sizes, such as 250,500 and 1000 ml .
- It is used in solution preparation but are less accurate than volumetric flasks.
- The purpose of an Ehrlenmeyer flask is to help dissolve a solid solute into solution before transfer to a volumetric flask for final volume adjustment
- It is a tall flask with multiple volume gradation.
- The purpose of this flask is to aliquot volumes of a fluid in making up a reagent dilution or to determine the volume of an unknown fluid.

■ Beakers

- They are used to hold stock solutions or diluents for short-term storage or during laboratory procedures.
- They are available in a variety of total volume sizes, but have the least accuracy of the three types of flasks.

Pipettes

- There are two main type of pipettes are used in biochemical laboratory:
a) Volumetric or transfer pipettes
- They are designed to deliver a fixed volume of liquid
\square It is consists of a cyclindrical bulb joined at both ends to narrowed glass tubing.
■ Non-blown out
- More accurate than measuring pipettes
b) Graduated or measuring pipettes
- These consists of a plain narrow tube drawn out to a tip and graduated uniformly along its length.
- Some are blown out
- There are two types of graduated pipettes are available: 1-Mohr, graduated between two marks 2-Serological pipettes with graduation marks down to the tip.

Pipette Types

Walurmetric pipette

Graduated pipettes

How to use pipettes

- The pipette is first washed with water ,then rinsed several times with a little of the solution to be used and finally filled to just above the mark, the liquid is allowed to fall to the mark.
- The solution is allowed to drain into the appropriate vessel with the jet of the pipette touching the wall of the vessel.
- After the flow of the liquid has stopped, the jet is held against the wall for some times and then removed.

1. Use mechanical suction

2. Wipe off outside of pipette with gauze

3. Adjust the meniscus; read meniscus at the bottom of the curved liquid

Smallest division of graduated pipette

- How to know the smallest division of a pipette:

Smallest division: Smallest division: Smallest division: Smallest division:
0.1 ml
0.2 ml
0.02 ml
0.02 ml

Method

Part 1

- Examine the 3 pipette placed on your laboratory bench .
- Record their types and the volume of their smallest division .

Pipette	Type	Smallest division
A		
B		
C		

Part 2

- By using distilled water , pipette into weighted beaker
- with 5 ml graduate pipette(Mohr) $=5 \mathrm{ml}$ water
- with 5 ml measuring cylinders $=5 \mathrm{ml}$ water

	Weight of the beaker	Weight of beaker +water	Weight of water
graduate pipette			
measuring cylinder			

+ Laboratory Equipment

■ pH Meter:

- Hydrogen ion concentration of many solution is low and difficult to measure accurately.
- So, the term pH introduced as a way of expressing hydrogen ion concentration
- pH define as the negative logarithm of the hydrogen ion concentration.
$\rightarrow \mathrm{pH}=-\log 10[\mathrm{H}+]$
- pH range value $(0-14)$, the higher pH number, the lower the hydrogen ion concentration and vice versa

Glass electrode

- The glass electrode consist of a very thin bulb ,blown onto a hard glass tube.
- The bulb is made of high conductivity glass which is sensitive to pH .
- The bulb contains a solution of hydrochloric acid (0.1 N) and is connected to a platinum lead via silver - silver chloride electrode which is reversible with respect to hydrogen ions.
- The glass electrode is very sensitive and readily responds to changes in hydrogen ion
 concentration.

Method

- Standarize the PH meter by placing the electrode in a solution of known $\mathrm{PH}(\mathrm{PH} 4,7,9)$.
- Wash the electrode with distilled water and dry with a tissue then put it into sample solution A \& B, read PH.
- Note: After use the electrode you should storage it in distilled water and never be allowed to dry out. If the electrode get dry it will required reactivation.

Solution	pH Value
Standard 4	
Standard 7	
Standard 9	
A	
B	

Spectrophotometer

- It is an instrument used to measure the intensity of light at a given wavelength that is transmitted or absorbed by a sample.
- It consist of two parts:
$■$ Spectrometer is designed to emit the light at different wavelength
- Photometer contains photoelectric cell and the potentials are recorded on a scale which read out as absorbance or transmittance.

Wavelength in this instrument is divided

 into:■Invisible range(ultraviolet) from 100 to 360 $n m \rightarrow$ [Quartz cuvette are used]

■ Visible range (400-700 nm) \rightarrow [Glass or plastic cuvette are used]
-Blank: It contains everything except the compound to be measured.

Method

- Adjust the spectrophotometer to zero using blank solution in the cuvette and read the absorbance of standard solution and the solution of unknown concentration at 280 nm .
- Read your result in the table below:

NO.	Solution	Absorbance
1	Standard solution $(0.5 \mathrm{gm} / 100 \mathrm{ml}$ of BSA $)$	
2	Solution of Unknown concentration	

- Calculate the concentration of unknown solution from the following formula:
$\mathrm{Cu}=(\mathrm{Au} / \mathrm{As}) \times \mathrm{Cs}$

Where:
$A u=A b s o r b a n c e ~ o f ~ t h e ~ s o l u t i o n ~ o f ~ u n k n o w n ~ c o n c e n t r a t i o n ~$
As=Absorbance of standard solution
Cs=Concentration of standard solution
$\mathrm{Cu}=$ Concentration of the solution of unknown concentration

