PHYSICS 501

Solutions of $1^{\text {st }}$ Homework -FALL 2019
Prof. V. Lempesis

1. Two vectors \mathbf{A}, \mathbf{B} have precisely the same magnitudes. For the magnitude of $\mathbf{A}+\mathbf{B}$ to be three times larger than the magnitude of $\mathbf{A}-\mathbf{B}$ what must be the angle between them?
(5 marks)

Solution:

A

A
$|\mathbf{A}+\mathbf{B}|=3|\mathbf{A}-\mathbf{B}| \Rightarrow|\mathbf{A}+\mathbf{B}|^{2}=9|\mathbf{A}-\mathbf{B}|^{2} \Rightarrow$
$(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}+\mathbf{B})=9(\mathbf{A}-\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B}) \Rightarrow$
$\mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}=9(\mathbf{A} \cdot \mathbf{A}-\mathbf{A} \cdot \mathbf{B}-\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}) \Rightarrow$
$A^{2}+A B \cos \varphi+A B \cos \varphi+B^{2}=9 A^{2}-9 A B \cos \varphi-9 A B \cos \varphi+9 B^{2} \underset{A=B}{\Rightarrow}$
$2+2 \cos \varphi=18-18 \cos \varphi \Rightarrow 20 \cos \varphi=16 \Rightarrow \cos \varphi=8 / 10 \Rightarrow \varphi=\arccos (8 / 10) \Rightarrow$ $\varphi=36.8^{0}$
2. Find the vector $(\mathbf{A}-\mathbf{B}) \times(\mathbf{A}+\mathbf{B})$.

Solution:

$$
(\mathbf{A}-\mathbf{B}) \times(\mathbf{A}+\mathbf{B})=\mathbf{A} \times \mathbf{A}+\mathbf{A} \times \mathbf{B}-\mathbf{B} \times \mathbf{A}-\mathbf{B} \times \mathbf{B}=\mathbf{A} \times \mathbf{B}-(-\mathbf{A} \times \mathbf{B})=2 \mathbf{A} \times \mathbf{B}
$$

3. The points $A(2,4), B(5,8), C(13,8), D(10,4)$ define a parallelogram. Find the area of the parallelogram.
(5 marks)

Solution:

The parallelogram is defined by the vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$. These vectors are given by:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=(5,8)-(2,4)=(5-2,8-4)=(3,4), \\
& \overrightarrow{\mathrm{AD}}=(10,4)-(2,4)=(10-2,4-4)=(8,0)
\end{aligned}
$$

Answer must be given in this way. Other way, even correct, is not acceptable

4. We have two vectors $\mathbf{A}=(2,4)$ and $\mathbf{B}=(-2,1)$. The components are given with respect to a coordinate system $\left(x-y\right.$. We chose now another system of axis $x^{\prime}-y^{\prime}$ which is rotated at an angle $\varphi=-30^{0}$ with respect to $x-y$. Find out: a) The components of the two vectors in the new system b) The scalar product of the two vectors in both systems

Solution:

The components of the two vectors in the rotated system are given by:

$$
\begin{gathered}
\begin{array}{c}
A_{x}^{\prime}=A_{x} \cos \phi+A_{y} \sin \phi \\
A_{y}^{\prime}=-A_{x} \sin \phi+A_{y} \cos \phi
\end{array} \Rightarrow \begin{array}{l}
A_{x}^{\prime}=2 \cos \left(-30^{\circ}\right)+4 \sin \left(-30^{\circ}\right) \\
A_{y}^{\prime}=-2 \sin \left(-30^{\circ}\right)+4 \cos \left(-30^{\circ}\right)
\end{array} \Rightarrow \begin{array}{l}
A_{x}^{\prime}=2 \cos \left(-30^{\circ}\right)+4 \sin \left(-30^{\circ}\right) \\
A_{y}^{\prime}=-2 \sin \left(-30^{\circ}\right)+4 \cos \left(-30^{\circ}\right)
\end{array} \\
\Rightarrow \begin{array}{l}
A_{x}^{\prime}=2 \sqrt{3} / 2-4 / 2 \\
A_{y}^{\prime}=-2(-1 / 2)+4 \sqrt{3} / 2
\end{array} \Rightarrow \begin{array}{l}
A_{x}^{\prime}=\sqrt{3}-2=-0.268 \\
A_{y}^{\prime}=1+2 \sqrt{3}=4.464
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{c}
B_{x}^{\prime}=B_{x} \cos \phi+B_{y} \sin \phi \\
B_{y}^{\prime}=-B_{x} \sin \phi+B_{y} \cos \phi
\end{array} \Rightarrow \begin{array}{c}
B_{x}^{\prime}=(-2) \cos \left(-30^{\circ}\right)+1 \sin \left(-30^{\circ}\right) \\
B_{y}^{\prime}=-(-2) \sin \left(-30^{\circ}\right)+1 \cos \left(-30^{\circ}\right)
\end{array} \Rightarrow \begin{array}{l}
B_{x}^{\prime}=(-2) \sqrt{3} / 2+1(-1 / 2) \\
B_{y}^{\prime}=-(-2)(-1 / 2)+1 \sqrt{3} / 2
\end{array} \\
& \Rightarrow \begin{array}{l}
B_{x}^{\prime}=-\sqrt{3}-1 / 2=-2.232 \\
B_{y}^{\prime}=-1+\sqrt{3} / 2=-0.134
\end{array}
\end{aligned}
$$

The scalar product is given:
$\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=2 \cdot(-2)+1 \cdot 4=0$
$\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=A_{x}^{\prime} B_{x}^{\prime}+A_{y}^{\prime} B_{y}^{\prime}+A_{z}^{\prime} B_{z}^{\prime}=(\sqrt{3}-2) \cdot(-\sqrt{3}-1 / 2)+(1+2 \sqrt{3}) \cdot(-1+\sqrt{3} / 2)=0$
The scalar product must be zero in any rotated frame of reference!

