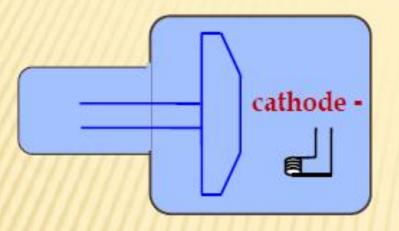
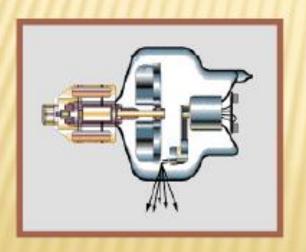
RAD 222/331 Lecture 2

INTRODUCTION TO RADIOGRAPHIC POSITIONING EQUIPMENT AND ACCESSORIES

EQUIPMENT

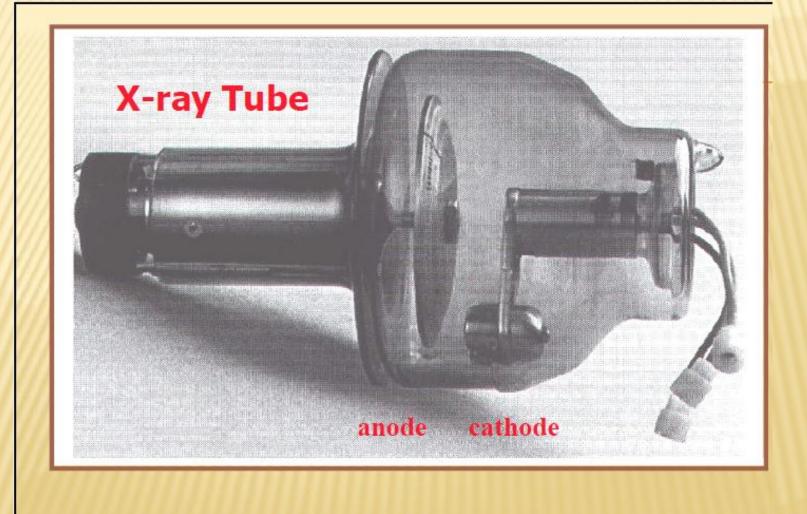

to produce x rays

- **to record the image**
- to control size & shape of beam
- accessories & patient comfort items
- to process the image


X-RAY PRODUCING EQUIPMENT

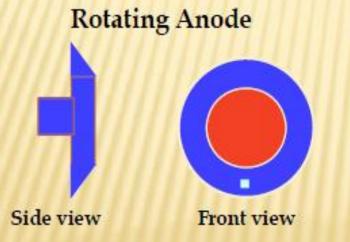
- x-ray tube
- high voltage generator
- control console

anode +

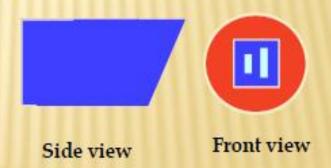

Glass vacuum diode tube

cathode

- negative electrode
- source of electrons
- 2 filaments (coils)

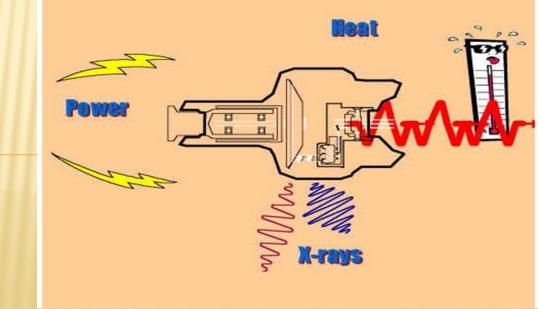

anode

- positive electrode
- attracts & stops electrons

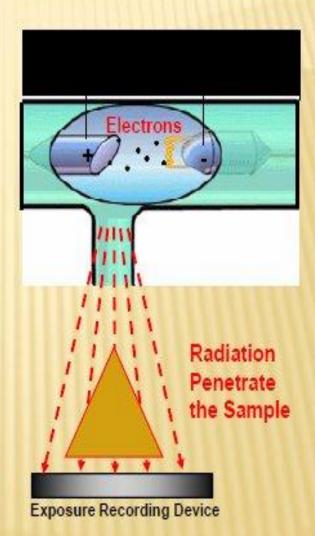


ANODE

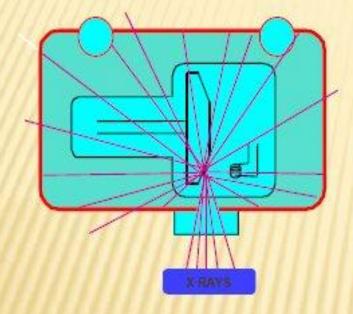
- > target
 - × Area on anode where electrons stop
- focal spot
 - × Area on target that emits the x rays
- types of anodes



Stationary Anode


WHY BOTATING ANORE

- Only small fraction of energy of accelerated electrons converted into x-ray.
- The remaining energy is converted to heat .
- Most x-ray machines is have rotating a nodes to spread out the heat to prevent anode melting
- This is reason of the noise hearing from an x-ray machine .



WHAT HAPPENS IN AN X-RAY TUBE:

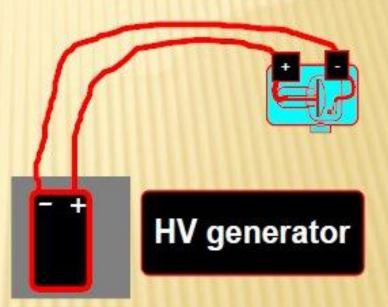
- cathode supplies e-
- anode attracts e-
- electrons move at high speed (KE) to target
 - collide with target
 - KE of e- changed to x rays & heat
- x rays emitted at focal spot
- Unusable –x-rays absorbed by tube shielding

PROTECTIVE X-RAY TUBE HOUSING

- Lead Surrounds tube
- Small opening allowing beam of x rays to exit
- Shield to absorb x rays not used
- Leakage radiation x rays that penetrate the housing

HIGH VOLTAGE GENERATOR

- provides power to move (accelerate) electrons from cathode to anode
- 40,000 to 150,000 volts (40 TO 150 KVp)


1,000 volts = 1 KVp

- V to kV ÷ 1000
- kV to V \times 1000

connected to x-ray tube with

high tension cables

CONTROL PANEL (CONSOLE)

- MANY VARIATIONS
 - + knobs vs. buttons, etc.
- × Touch-screen type control panel

CONTROL CONSOLE OR PANEL

MAIN ELEMENTS

- 1. main power switch (circuit breaker near console)
- 2. ON/OFF (on the console)
- 3. Technique controls (kV, mA, t, etc.)
- 4. Exposure controls
- 5. Equipment operation indicators

KVP SELECTION

- KVp used to control ENERGY LEVEL of x rays
- PENETRATION (QUALITY) OF BEAM
- main control for image CONTRAST
- > selection in unit value range from ~40 KVp to 150 KVp

* Increments: major = 10 KVp minor = 1 KVp

major	40	50	60	70	80	90	100	110	120	130
minor	0	1	2	3	4	5	6	7	8	9

MA SELECTION

MILLIAMPERAGE

- 1A =1000 mA [A × 1000 = mA]
- $1mA = 0.001 A [mA \div 1000 = A]$
- Amperage # of e- flowing in a current
- Controls # of x rays produced
- QUANTITY OF X RAYS IN BEAM
- Main control for image DENSITY

TIME SELECTION

- + length of time machine produces x rays
- + range of selections usually at specific values
 - × not same all machines

.003	.006	.008	.011	.014	.017	<mark>.022</mark>	.02	.04	.05	.062	.08
.1	.13	.16	.2	.25	.33	.5	.7	1	2	4	6

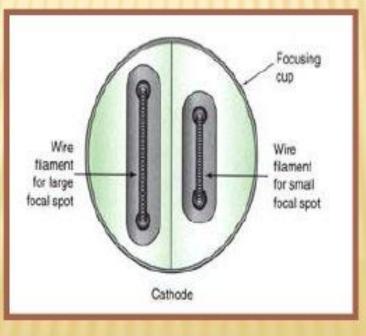
MA & TIME WORK TOGETHER

combined for total control on QUANTITY

- mA = # of e- (per second of time)
- time = duration
- Relative value for total # of x rays
 - mAs = mA X t
 - when mAs = similar in # of x rays
 - 2x mAs = 2x # of x rays

WHAT IS THE MAS FOR 300 MA AT 6 MS?

mAs = mAx T $T = 6 \div 1000 = .006 s$ $= 300 \text{mA} \times .006 \text{s}$ $= 1.8 \, \text{mAs}$


FOCAL SPOT SELECTION

activates small or LARGE filament in cathode

or focal spot emitting x rays

small FS = sharper image / more tube wear LARGE FS = less sharp image / less tube wear

As the focal spot size decreases, local heating of the X-ray tube target increases and can eventually be so high as to vaporize the material, leading to tube failure.

EXPOSURE ACTIVATING SWITCH

Two Position Safety Control

1. Step .1

prepares tube for x-ray production By

a. rotates anode to correct speed

b. heats selected cathode filament (release e)

2 Step .1

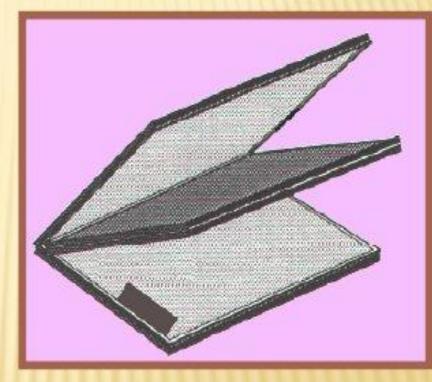
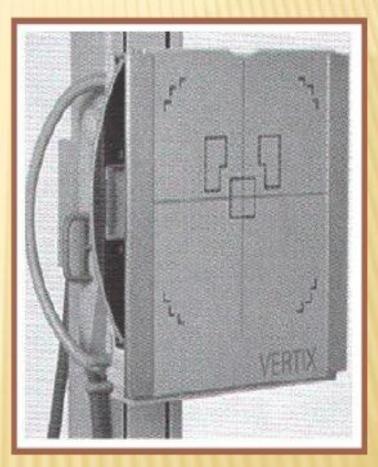

Exposure to produces x rays

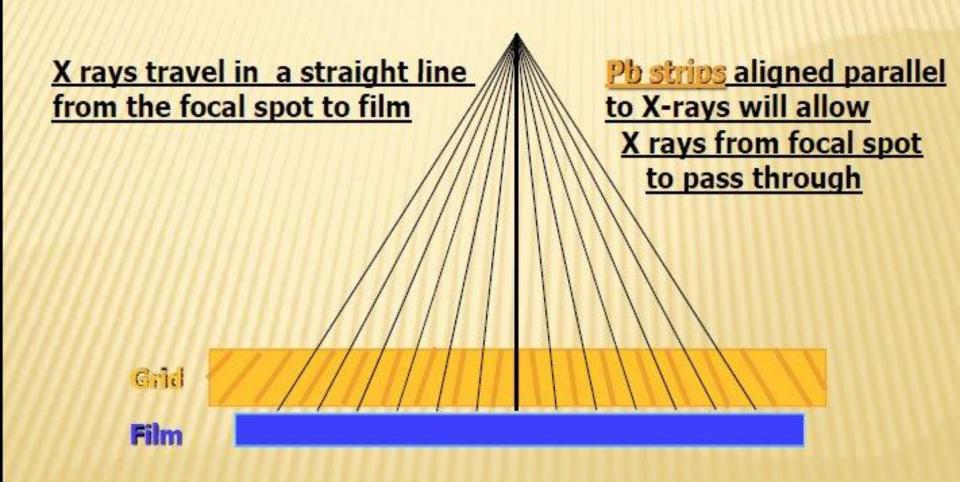
IMAGE PRODUCTION EQUIPMENT

1 FILM								
- SPEED								
> SLO	W =	↑ X RAY	'S & 🛧	DETAIL				
> FAS	т/// =	🔸 X RAY	s & 🦊 💧	DETAIL				
> numerical values indicating relative change in radiation								
needed (inverse relationship)								
	100 2	00 300	400					
- SIZES	8X10, 10	0X12, 7X17	, 14X17, .					
- TYPES	single vs	. double en	nulsion					


2 CASSETTES

- light tight holders for film
- sized for film
- FRONT vs. BACK
- ID window
- Types
- × cardboard vs. screen

AUTOMATIC EXPOSURE CONTROL (AEC)


- electronic method to stop x-ray production
- stops when preset film density achieved (i.e. # of x rays)
- small sensor areas measure amount of radiation <u>exiting</u> patient

- Device used to the effect of scattered x rays on the film
 Theory
 - thin strips of x ray absorbing material are placed between the patient & the film
 - arrangement of strips allows transmitted x rays to pass through to the film but absorbs scattered x rays
 - "CLEANS UP" film fog caused by scatter

GRID CROSS SECTION / THEORY OF OPERATION

GRID - SCATTER REDUCTION

Pb strips aligned parallel to X-rays will absorb scattered X rays not from focal spot

GRID USAGE RULES

2. use correct 3. center x-ray SID for grid beam to grid

1. grid placement

patient grid cassette

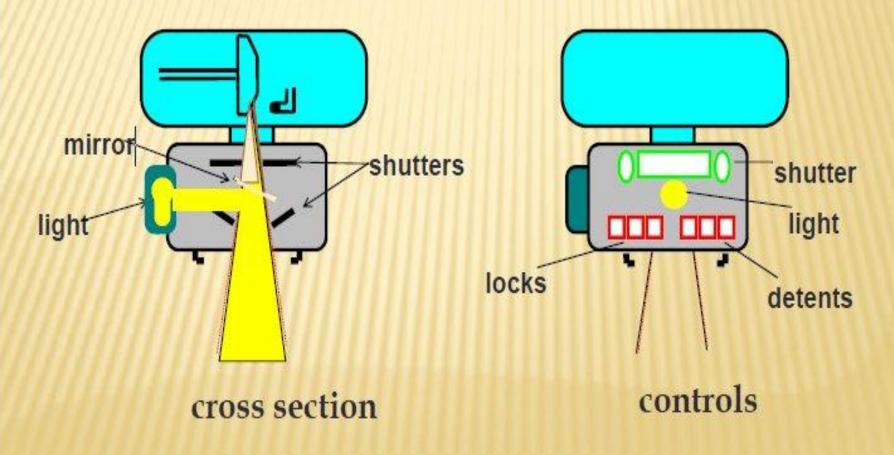
4. beam angles beam angle OK

14

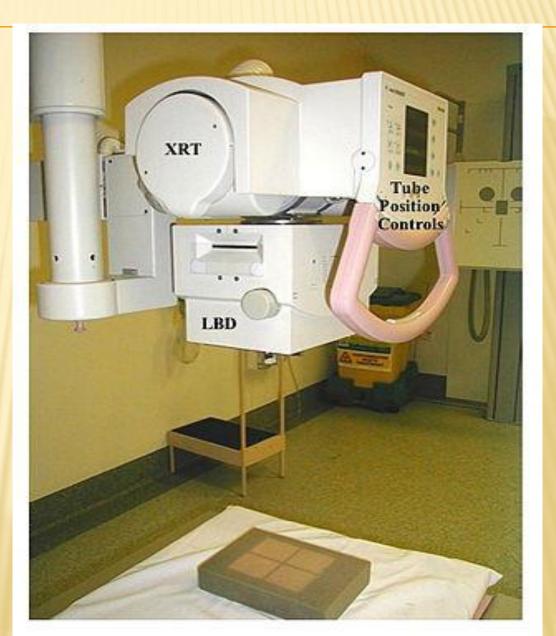
no beam angle across grid

GRID TYPES

Stationary


- image of grid superimposed on radiograph
- Reciprocating
 - Bucky or Potter-Bucky
 - grid moves back/forth during exposure
 - blurs image of grid
 - requires more radiation to use

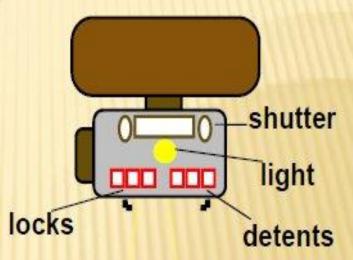
BEAM RESTRICTION DEVICES


- Item used to shape the x-ray beam to fit the part of the body
- device types :
- collimator or Light beam diaphragm
- × 🗆 CONE
- diaphragm

COLLIMATOR

Box like beam restricting device with adjustable lead shutters attached to the x-ray tube housing port

Light beam diaphragm(LBD) or collimator



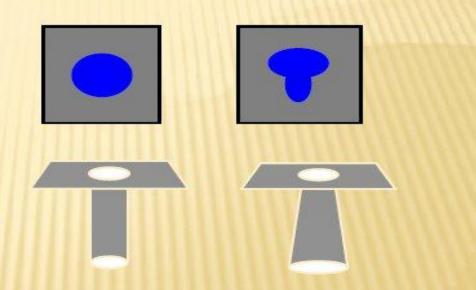
COLLIMATOR FUNCTIONS

- > shape & size beam
- > light localization of beam
- tube locking controls
- detent controls
- accessory attachments

"COLLIMATION RULE"

- The size of the collimated x-ray field should be adjusted to
 - the <u>smallest reasonable size</u> that will include the portion of the body to be imaged
 - · but never larger than the size of the film.

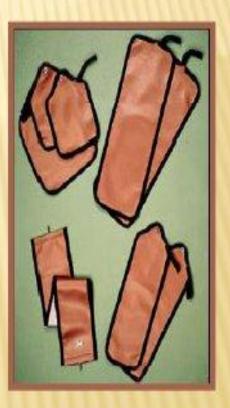
POSITIVE BEAM LIMITATION DEVICE (PBL)


- automated collimation system used with Bucky tray (table or upright)
- automatically adjusts field size to film size
 - + will not allow larger fields
 - will have a method to reduce field size

OTHER BEAM RESTRICTORS

- 2. DIAPHRAGM lead cut out unique shapes
- 3. CONES lead extension

conical or tubular

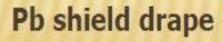


ACCESSORY DEVICES

Items used to:

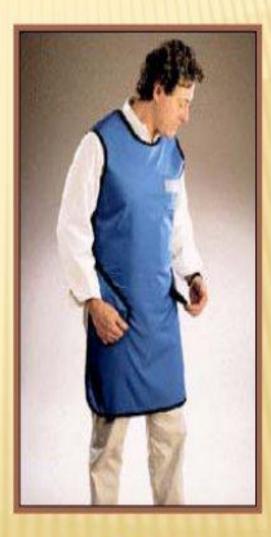
- immobilize/support patient or part
 - sponges
 - o (can be in image area)
 - sandbags
 - (cannot be in image area)

SPONGE SET


SANDBAG SET

ACCESSORY DEVICES

Items used to:


- + shield patient or others from exposure
 - lead aprons, gloves, glasses, shields

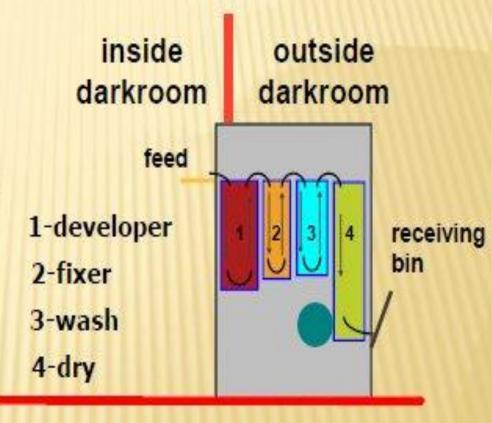
Pb glove

Pb apron

THIROID, GONADAL

MARKER

Most important to mark the part which you do x-ray for it , mark right or left .

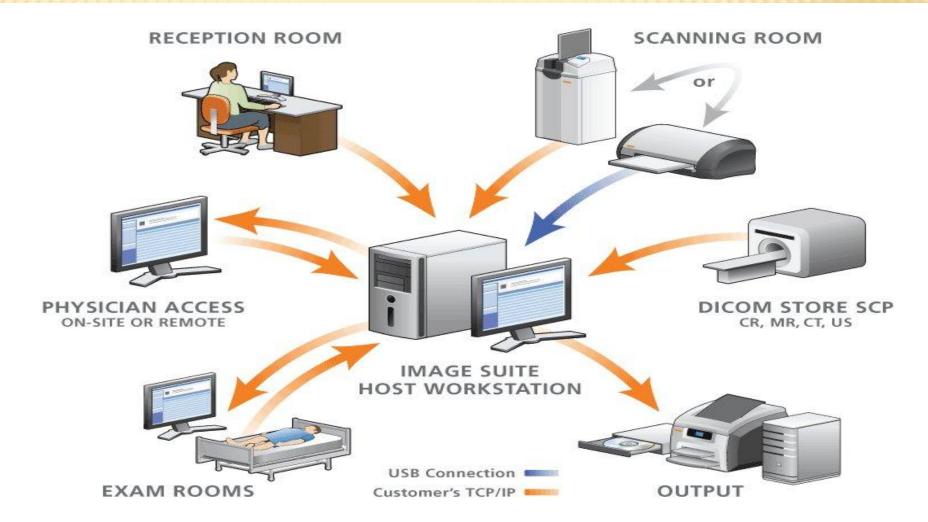


FILM PROCESSING

- Exposed film must be processed
 - makes the image visible
 - makes the image permanent
- > Automated machines
 - "stand by" mode
 - replenishment

"DAY LIGHT" PROCESSING

- processing system that does not use darkroom
- specialized equipment
 - cassettes: end slots on cassettes for loading / unloading film
 - film loader: stores & loads film into cassette
 - film unloader: device on processor removes film from cassette



BUT THE MOST RESENT IS PACS SYSTEM

picture archiving and communication system (PACS)

PACS : is a technology which provides economical storage and convenient access to, images from multiple modalities (source machine types).

REFERENCES

- Text book of radiographic positioning and related anatomy; by
- × Kenneth L.Bontrager, 5th edition
- × Useful Websites
- * http://www e-radiography net/