1) Assume that you have a sample of $n 1=9$, with the sample mean $X_{1}=45$, and a sample standard deviation of $S_{1}=6$, and you have an independent sample of $n 2=12$ from another population with a sample mean of $X_{2}=31$ and the sample standard deviation $S_{2}=8$. Complete parts (a) through (d).
a. What is the value of the pooled-variance tstat test statistic for testing $\mathrm{H}_{0}: \mu 1=\mu 2$? tstat= \qquad
(Type an integer or a decimal rounded to four decimal places as needed.)
b. In finding the critical value $t^{\alpha} / 2$, how many degrees of freedom are there? degrees of freedom \square
c. Using a significance level of $\alpha=0.005$, what is the critical value for a one-tail test of the hypothesis $\mathrm{H}_{0}: \mu 1 \leq \mu 2$ against the alternative $\mathrm{H}_{1}: \mu 1>\mu 2$?

The critical value is \square
(Type an integer or a decimal rounded to four decimal places as needed.)
d. What is your statistical decision?
A. Reject Ho because the computed tstat test statistic is less than the upper-tail critical value.
B. Do not reject Ho because the computed tstat test statistic is greater than the upper-tail critical value.
C. Reject H_{0} because the computed tstat test statistic is greater than the upper-tail critical value.
D. Do not reject Ho because the computed tstat test statistic is less than the upper-tail critical value.
2)Assume that you have a sample of $n_{1}=8$, with the sample mean $X_{1}=42$, and a sample standard deviation of $S_{1}=4$, and you have an independent sample of $n_{2}=15$ from another population with a sample mean of $X_{2}=34$ and a sample standard deviation of $S_{2}=5$. What assumptions about the two populations are necessary in order to perform thepooled-variance t test for the hypothesis $\mathrm{H} 0: \mu 1=\mu 2$ against the alternative $\mathrm{H} 1: \mu 1>\mu 2$ and make a statistical decision?
Choose the correct answer below:
A.It is necessary to assume that the populations from which you are sampling have unequal variances and equal sizes.
B.It is necessary to assume that the populations from which you are sampling have negative tstat test statistics and unequal sample means.
C. It is necessary to assume that the populations from which you are sampling have equal population means and positive standard deviations.
D. It is necessary to assume that the populations from which you are sampling have
independent normal distributions and equal variances.
3)Assume that you have a sample of $n_{1}=9$, with the sample mean $X_{1}=47$, and a sample standard deviation of $S_{1}=7$, and you have an independent sample of $n_{2}=13$ from another population with a sample mean of $X_{2}=30$, and the sample standard deviation $\mathrm{S}_{2}=8$. Construct a 95% confidence interval estimate of the population mean difference between $\mu 1$ and $\mu 2$.

(Type an integer or decimal rounded to two decimal places as needed.)
4)A survey of 700 adults from a certain region asked, "What do you buy from your mobile device?" The results indicated that 52% of the females and 40% of the males answered clothes. The sample sizes of males and females were not provided. Suppose that of 300 females, 156 reported they buy clothing from their mobile device, while of 400 males, 160 reported they buy clothing from their mobile device. Complete parts (a) through (d) below.
a. Is there evidence of a difference between males and females in the proportion who said they buy clothing from their mobile device at the 0.1 level of significance?
*State the null and alternative hypotheses, where $\pi 1$ is the population proportion of females who said they buy clothing from their mobile device and $\pi 2$
A.H0: $\pi 1=\pi 2 \quad \mathrm{H} 1: \pi 1>\pi 2$
B. $\mathrm{H} 0: \pi 1=\pi 2$ H1: $\pi 1<\pi 2$
C.HO: $\pi 1=\pi 2$ H1: $\pi 1 \neq \pi 2$
D.H0: $\pi 1 \neq \pi 2$ H1: $\pi 1=\pi 2$
E.H0: $\pi 1 \neq \pi 2$ H1: $\pi 1<\pi 2$
F.H0: $\pi 1 \neq \pi 2$ H1: $\pi 1=\pi 2$
*Determine the value of the test statistic.

$$
Z_{\text {STAT }}=\square
$$

(Type an integer or a decimal. Round to two decimal places as needed.)
*Determine the critical value(s) for this test of hypothesis.
The critical value(s) is (are)

(Type integers or decimals. Round to two decimal places as needed. Use a comma to separate answers as needed.)
*State the conclusion:
Reject the null hypothesis. There is sufficient evidence to support the claim that there is a difference between males and females in the proportion who said they buy clothing from their mobile device
b. Find the p-value in (a).

The p-value in part (a) is \square
(Type an integer or a decimal. Round to three decimal places as needed.)
c. Construct and interpret a 90% confidence interval estimate for the difference between the proportion of males and females who said they buy clothing from their mobile device .
The confidence interval is
 to

(Type integers or decimals. Round to four decimal places as needed. Use ascending order.)
*What does the confidence interval mean?
A researcher can be 90% confident that the difference in the population proportions of males and females who said they buy clothing from their device is 95%, contained in less than the lower bound of greater than the upper bound of the interval.
5)The following information is available for two samples selected from independent normally distributed populations.
Population A:
n1 $=25$
$S^{2}{ }_{1}=36$
Population B:
n2 $=25$
$S^{2}{ }_{2}=9$
a. Which sample variance do you place in the numerator of Fstat?
A. $S^{2}{ }_{2}=9$
B. $S^{2}{ }_{1}=36$
b. What is the value of Fstat?

Fstat $=\square$
(Round to two decimal places as needed.)
6)An experiment has a single factor with six groups and two values in each group. In
determining the among-group variation, there are 5 degrees of freedom. In determining the within-group variation, there are 6 degrees of freedom. In determining the total variation, there are 11 degrees of freedom.
a. If SSA=200 and SST=248, what is SSW? SSW $=48$ (Type an integer or a decimal.)
b. What is MSA?
$M S A=40$
(Type an integer or a decimal.)
c. What is MSW?

MSW = 88
(Type an integer or a decimal.)
d. What is the value of Fstat?

Fstat $=5$
(Type an integer or a decimal.)
7)An experiment has a single factor with six groups and two values in each group. In determining the among-group variation, there are 5 degrees of freedom. In determining thewithin-group variation, there are 6 degrees of freedom. In determining the total variation ,there are 11 degrees of freedom. Also, note that: $S S A=105, S S W=42, S S T=147, M S A=21, M S W=7$, and Fstat=3. Complete parts (a) through (d).
a. Construct the ANOVA summary table and fill in all values in the table.

Degrees of Sum of

Source	Freedom	Squares	Mean Squa	
Among groups	5	105	21	3
Within groups	6	42	7	

Total
11
147
(Simplify your answers.)
b. At the 0.025 level of significance, what is the upper-tail critical value from the F distribution? F0.025= 5.99
(Round to two decimal places as needed.)
c. State the decision rule for testing the null hypothesis that all six groups have equal population means Reject H_{0} if Fstat>5.99
d. What is your statistical decision?
 to conclude there is a difference in the population means for the six groups.

