Preparation of Buffer Solutions

Hydrogen number (ph):

$>$ The acidity of certain solutions can be described by using hydrogen number (pH).
$>\mathrm{pH}$ defined as: The negative logarithm of the hydrogen ion concentration.

$$
\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]
$$

$>$ When the pH increase the concentration of hydrogen ion decrease and vice versa.

Acidic solution

Neutral solution

Basic solution
$>$ To measure the hydrogen number in certain solution in very accurate way, we use a special instrument called $\mathbf{p H}$ meter.
> It's consist of glass electrode which contain a very thin bulb, blown onto a hard glass tube which is sensitive to pH .
$>$ The bulb contains a solution of hydrochloric acid and is connected to a platinum lead via silver -silver chloride electrode which is reversible with respect to hydrogen ions.
$>$ Other methods?
$>$ Supporting materials:

1. How pH meter works: https://youtu.be/P1wRXT12L3I
2. How to use the pH meter: https://youtu.be/vwY-xWMam7o

pH and biological systenn:

$>$ All biochemical reactions occur under strict conditions of the concentration of hydrogen ion.
$>$ Biological life can not withstand large changes in hydrogen ion concentrations which we measure as the pH .
$>$ So how to resist changes in pH ? Buffers.

Blood pH Levels

Death			Acidosis		Normal pH	Alkalosis		Death	
6	7	7.34	7.38	7.8	$\mathbf{9}$				

It is vitally important to maintain the body acid alkaline balance at the correct pH level to enjoy good health and avoid degenerative disease.
$>$ So, buffers defines as: the solutions that have the ability to resist changes in $\mathbf{p H}$ upon the addition of limited amounts of acid or base.
$>$ A buffer is made up of:
a weak acid and its conjugate base. Or a weak base and its conjugate acid .

Two types of Buffers

A buffer is made up of a weak acid and its conjugate base.
Or
A weak base and its conjugate acid.

Acidic Buffer

Are made from weak acid and its conjugated base[its salt].
Example:

1. $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$ (Pka)
$\rightarrow \mathrm{CH} 3 \mathrm{COOH}$ (Weak acid)
\rightarrow CH3COONa (conjugated base -its salt-)
2. $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (Pka)

Basic Buffer

Are made from weak base and its conjugated acid [its salt].

Example:

1. $\mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{Cl}$ (Pkb)
$\rightarrow \mathrm{NH}_{3}$ (Weak base)
$\rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (conjugated acid -its salt-)

Mechanisn of ectjon:

$>$ How buffers can resist the change in pH ?
-Example using [HA/A$]$] buffer:
\rightarrow Where: HA is Weak acid and A- is conjugated base [its salt].

$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

If \mathbf{H}^{+}(acid) is added to this buffer system $\rightarrow \mathbf{H}^{+}$will react with conjugated base \rightarrow to give conjugate acid.

If $\mathbf{O H}^{-}$(base) is added to this buffer system $\rightarrow \mathbf{O H}^{-}$will react with conjugated acid \rightarrow to give conjugate base and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{HA} \stackrel{\text { OH }}{ } \mathrm{AH}^{-}+\mathrm{H}_{2} \mathrm{O}$

Mechenism off Action cont?

Example:

Buffer system: CH3COOH / CH3COO- , (CH3COOH :acid - CH3COO-: conjugated base)

| - When acid $[\mathrm{H}+]$ added: | $\rightarrow \mathrm{CH} 3 \mathrm{COO}-\mathbf{H +}$ | $\rightarrow \mathrm{CH} 3 \mathrm{COOH} \uparrow$ |
| :--- | :--- | :--- | :--- |
| - When base $[\mathrm{OH}]$ added: | $\rightarrow \mathrm{CH} 3 \mathrm{COOH}+\mathbf{O H}-$ | $\rightarrow \mathrm{CH} 3 \mathrm{COO}-\uparrow+\mathrm{H} 2 \mathrm{O}$ |

$>$ NOTE: It resists pH changes when it's two components are present in specific proportions.
$>$ Thus a buffer can protect against pH changes from added $\mathrm{H}+$ or OH - ion as long as there is sufficient basic and acidic forms respectively \rightarrow As soon as you run out of one of the forms you no longer have a buffer .

Henderson-Masselbalch equation:

> The Henderson-Hasselbalch equation is an equation that is often used to:
1- To calculate the pH of the Buffer.
2-To prepare Buffer.

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

> It relates the Ka [dissociation constant] of a weak acid, [HA] concentration of weak acid, [A-] concentration of conjugate base [salt of the weak acid] components and the pH of the buffer.

Choosing the proper buffer:

$>\mathrm{A}$ buffer is best used close to its pKa [to act as a good buffer the pH of the solution must be within one pH unit of the pKa .
\rightarrow The buffer capacity is optimal when the ratio of the weak acid to its salt is 1:1; that is, when $\mathrm{pH}=\mathrm{pKa}$.

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pka}+\log \mathrm{l} \\
\mathrm{pH}=\mathrm{pka}+\mathrm{o} \\
\mathrm{pH}=\mathrm{pka}
\end{gathered}
$$

$>$ Quantitative measure of buffer resistance to pH changes is called buffer capacity.
$>$ Buffer capacity can be defined in many ways, it can be defined as:
The number of moles of $\mathrm{H}+/ \mathrm{OH}$ - ions that must be added to one liter of the buffer in order to decrease /increase the pH by one unit respectively.
$>$ Buffer capacity is directly proportional to the buffer concentration.

Practical Papt

To learn how to prepare buffers.
$>$ To understand the behaviour and nature of buffers solutions.

A. Preparation of phosphate buffers

Prepare 50 ml from phosphate buffer with concentration 0.25 M and $\mathrm{pH}=7.4$, if you know that ($\mathrm{pKa}=7.2$).

You are provided with buffer solution content: Monosodium dihydrogen phosphate $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and Disodium hydrogen phosphate $\underline{\mathrm{Na}} 2 \mathrm{HPO} 4 .^{2}$

Solution:

- Provided:
- $\mathrm{Pka}=7.2$
- $\mathrm{pH}=7.4$
- Final volume of buffer $=50 \mathrm{ml}$
- Concentration of buffer $=0.25 \mathrm{M} \rightarrow[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$
- Required:
- Weight (g) of NaH 2 PO 4 (as HA) and Na 2 HPO 4 (as A).

Calculationsi

-To prepare a buffer Henderson-Hasselbalch equation is used:

$$
\mathbf{p H}=\mathbf{p k a} \mathbf{+} \log [\mathbf{A}-] \backslash[\mathbf{H A}]
$$

1. First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.25 M :

$$
\rightarrow \text { Assume }[\mathrm{A}-]=\mathrm{y} \quad \text { and } \quad[\mathrm{HA}]=0.25-\mathrm{y}
$$

So:

$$
7.4=7.2+\log \frac{\mathrm{y}}{0.25-\mathrm{y}} \quad \rightarrow 0.2=\log \frac{\mathrm{y}}{0.25-\mathrm{y}}
$$

By taking the "Anti log for both sides" :

$$
1.6=\frac{\mathrm{y}}{0.25-\mathrm{y}} \rightarrow \mathrm{y}=1.6 \mathrm{x}(0.25-\mathrm{y}) \rightarrow \mathrm{y}=0.4-1.6 \mathrm{y} \rightarrow \mathrm{y}+1.6 \mathrm{y}=0.4 \rightarrow 2.6 \mathrm{y}=0.4
$$

$\mathrm{y}=0.15 \mathrm{M}$ [which is the concentration of [A-] in the buffer] So, $[\mathrm{HA}]=0.25-0.15=\underline{\mathbf{0 . 1} \mathbf{M}}$ [which is the concentration of [HA] in the buffer]

Calculetions cont゚

2. Calculate the weight in (g) needed from [A-] to prepare the buffer, so number of mole of [A-] should be calculated first :
\rightarrow Calculate moles of A - in buffer:
No. of mole (of A-) = molarity (of A- calculated in the buffer) X volume L (volume of the buffer)

$$
=0.15 \times 0.05=0.0075 \mathrm{~mole}
$$

\rightarrow Calculate weight of A- needed:

$$
\begin{aligned}
& \text { Weight in }(\mathbf{g}) \text { of }[\mathrm{A}-]=\text { No. of moles } \times \text { MW } \\
&=0.0075 \times 142=1.065 \mathrm{~g}
\end{aligned}
$$

3. Calculate the weight in (g) needed from [HA] to prepare the buffer, so number of mole of [HA] should be calculated first :
\rightarrow Calculate moles of HA in buffer:
No. of mole (of HA) = molarity (of HA calculated in the buffer) X volume L (volume of the buffer)

$$
=0.1 \times 0.05=0.005 \mathrm{~mole}
$$

\rightarrow Calculate weight of HA needed:

$$
\text { Weight in (g) of }[\mathbf{H A}]=\text { No. of moles } x \text { MW }
$$

$$
=0.005 \times 120=0.6 \mathrm{~g}
$$Now take 0.6 g from NaH2PO4 and 1.065 g from Na2HPO4 dissolve them in a volume of a distal water (less than 50 ml).

\square Check the pH , then complete the volume up to 50 ml by addition of distal water using a volumetric flask.

B. Testing for buffering behaviop:

\square Method:

1. In one beaker add 10 ml of 0.25 M phosphate buffer that you have prepared, and in another beaker add 10 ml of KCl .
2. Measure the pH .
3. Add 0.1 ml from 2 M HCl to both solutions.
4. Measure the pH after the addition.

Solution	Measured pH	Add 2M HCl	Measured pH
0.25 M Phosphate buffer		0.1 ml	
0.2 M KCl		0.1 ml	

