

Hydrogen number (pH):

> The **acidity** of certain solutions can be described by using <u>hydrogen number (pH)</u>.

> **pH defined as:** The negative logarithm of the hydrogen ion concentration.

$pH = -Log[H^+]$

When <u>the pH increase</u> the concentration of <u>hydrogen ion decrease</u> and vice versa.
The pH range goes from 0 to 14.

Acidic solution : has higher concentration of hydrogen ions [H⁺] than hydroxyl ions [OH⁻]

Neutral solution: has equal concentration of hydrogen ions [H⁺] and hydroxyl ions [OH⁻]

Acidic solution : has lower concentration of hydrogen ions [H⁺] than hydroxyl ions [OH⁻]

Measuring of hydrogen number:

- To measure the hydrogen number in certain solution in <u>very accurate way</u>, we use a special instrument called **pH meter**. It's consist of two electrodes:
- 1. Reference electrode: contains silver-silver chloride wire immersed in saturated KCl solution.
- 2. Glass electrode: which contains a very thin bulb, that is sensitive to pH.

This device measures the difference between the electrodes, and converts it into a pH from 0 to 14.

- Supporting materials:
- 1. How pH meter works: <u>shorturl.at/fkpL3</u>
- 2. How to use the pH meter: <u>shorturl.at/lKXZ4</u>

Measuring of hydrogen number cont.:

Test strip (inaccurate):

A <u>pH test strip</u> is a strip of litmus paper with which you can measure the pH value of a liquid which show a different color at different acidities.

pH and biological system:

- All biochemical reactions occur under strict conditions of the concentration of hydrogen ion.
- Biological life <u>can not withstand large changes in hydrogen ion concentrations</u> which we measure as the pH.
- > So how to resist changes in pH ? **Buffers.**

Buffers:

So, **buffers defines as:** the solutions that have the ability **to resist changes in pH** upon the addition of **limited** amounts of acid or base.

> <u>A buffer is made up of:</u>

a weak acid and its conjugate base. Or a weak base and its conjugate acid.

> الحمض الضعيف + قاعدته المقترنة $HA \rightleftharpoons H^+ + A^-$ القاعدة الضعيفة + حمضها المقترن $BOH \rightleftharpoons B^+ + OH^-$

Two types of buffers

A buffer is made up of a weak acid and its conjugate base.

Or A weak base and its <u>conjugate acid.</u>

Acidic Buffer

Are made from <u>weak acid</u> and its conjugated base[its salt].

Example:

- 1. CH₃COOH / CH₃COONa (Pka)
- → CH3COOH (Weak acid)
- → CH3COONa (conjugated base –its salt-)

2. NaH₂PO₄ / Na₂HPO₄ (Pka)

Basic Buffer

Are made from <u>weak base</u> and its conjugated acid [its salt].

Example:

- 1. NH₃ / NH₄Cl (Pkb)
- \rightarrow NH₃ (Weak base)
- →NH₄Cl (conjugated acid –its salt-)

Mechanism of action:

How buffers can resist the change in pH?

-Example using [HA/A⁻] buffer:

→ Where: HA is Weak acid and A- is conjugated base [its salt].

$HA \rightleftharpoons H^+ + A^-$

If \mathbf{H}^+ (acid) is added to this buffer system $\rightarrow \mathbf{H}^+$ will react with <u>conjugated base</u> \rightarrow to give conjugate acid.

 \rightleftharpoons HA

If **OH**⁻ (base) is added to this buffer system \rightarrow **OH**⁻ will react with conjugated acid \rightarrow to give <u>conjugate base</u> and H₂O.

Mechanism of action cont.:

Example: Buffer system: CH₃COOH / CH₃COO⁻, (CH3COOH :acid - CH3COO-: conjugated base)

NOTE: It resists pH changes when it's two components are present in <u>specific proportions</u>. Thus, a buffer can protect against pH changes from added H+ or OH- ion as long as there is **sufficient** basic and acidic forms respectively \rightarrow As soon as you run out of one of the forms you no longer have a buffer. Henderson-Hasselbalch equation:

- > The Henderson-Hasselbalch equation is an equation that is often used to:
- 1. To prepare Buffer.
- 2. To calculate the pH of the Buffer.

pH = pka + log - [A-] [HA]

It relates the Ka [dissociation constant] of a weak acid, [HA] concentration of weak acid, [A-] concentration of conjugate base [salt of the weak acid] components and the pH of the buffer.

Choosing the proper buffer:

- A buffer is best used close to its pKa [to act as a good buffer the pH of the solution must be within one pH unit of the pKa].
- → The buffer capacity is optimal when <u>the ratio</u> of the weak acid to its salt is 1:1; that is, when pH = pKa.

Buffer capacity:

- > Quantitative measure of buffer resistance to pH changes is called **buffer capacity**.
- > **Buffer capacity** can be defined in many ways, it can be defined as:

The <u>number of moles of H^+/OH^- </u> ions that must be added to <u>one litre</u> of the buffer in order to <u>decrease</u> /increase

the pH by <u>one unit</u> respectively.

> Buffer capacity is **<u>directly proportional</u>** to the buffer concentration.

A buffer has concentration of **0.5** M

A buffer has concentration of **0.9** M

Which buffer has the <u>highest capacity</u>?

•	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•	•	•
•	٠	•	٠	•	٠	•	•	٠	٠
•	٠	•	•	•	•	٠	•	٠	٠
•	•	•	•	•	•	•	•	•	

Practical Part

Objectives:

- > To learn how to prepare buffers.
- > To understand the behaviour of buffers solutions.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A. Preparation of phosphate buffer:

Prepare 50 ml from phosphate buffer with concentration 0.25M and pH=7.4, if you know that (pKa=7.2).

You are provided with buffer solution content: Monosodium dihydrogen phosphate

 NaH_2PO_4 and Disodium hydrogen phosphate Na_2HPO_4

Solution:

Provided:

pKa = 7.2 pH=7.4

Final volume of buffer =50 ml

Concentration of buffer = 0.25 M \rightarrow [HA] + [A⁻]

Required:

Weight (g) of NaH2PO4 (as HA) and Na2HPO4 (as A).

Calculations:

-To prepare a buffer Henderson-Hasselbalch equation is used: pH = pKa+log [A-]\[HA]

First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.25 M:

0.15 + 0.1 = 0.25M

Assume [A-] = y and [HA] = 0.25 - y

So:

 $7.4 = 7.2 + \log \frac{y}{0.25 - y} \rightarrow 0.2 = \log \frac{y}{0.25 - y}$

By taking the "Anti log for both sides" : $1.6 = \frac{y}{0.25 - y}$ \Rightarrow y= 1.6 x (0.25 - y) \Rightarrow y= 0.4 - 1.6 y \Rightarrow y + 1.6 y = 0.4 \Rightarrow 2.6 y = 0.4

<u>**y**= 0.15 M</u> [which is the concentration of [A⁻] in the buffer] So, [HA] = 0.25 - 0.15 = 0.1 M [which is the concentration of [HA] in the buffer]

- 2. Calculate the **weight** in (g) needed from [A-] to prepare the buffer, so number of mole of [A-] should be calculated first :
- → Calculate moles of A- in buffer: [1]

No. of mole (of A-) = molarity (of A- calculated in the buffer) X volume L (volume of the buffer) = $0.15 \ge 0.0075$ mole

→ Calculate weight of A- needed: [2]

```
Weight in (g) of [A-] = No. of moles x MW
= 0.0075 \times 142 = 1.065 \text{ g}
```

- 3. Calculate the **weight** in (g) needed from [HA] to prepare the buffer, so number of mole of [HA] should be calculated first :
- → Calculate moles of HA in buffer: [1]

No. of mole (of HA) = molarity (of HA calculated in the buffer) X volume L (volume of the buffer)

 $= 0.1 \ge 0.05 = 0.005$ mole

→ Calculate weight of HA needed: [2]

Weight in (g) of [HA] = No. of moles x MW

= 0.005 x 120 = 0.6 g

No. of moles of solute Volume (L) [1] Molarity = [2] No. of moles =

Homework:

> You are provided with 0.15 M acetic acid and sodium acetate.

Prepare 100 ml of a 0.2M acetate buffer, pH =5.2 if you know that pKa =4.76.

Hint: you will calculate ml of acetic acid and g of sodium acetate.