King Saud University

College of Engineering

IE - 341: "Human Factors Engineering"

Fall - 2014 (1st Semester 1435-6H)

Chapter 1. Introduction

Prepared by: Ahmed M. El-Sherbeeny, PhD

Human Factors: Overview

- Successful design entails what man:
 - Needs
 - Wants (desires)
 - Can use
- Human factors investigated by designers:
 - Anthropometry (Human physical size, limitations)
 - Physiology: human body,
 - Reactions (hearing, seeing, touching, etc.)
 - Functions
 - Limitations
 - Capabilities
 - Ergonomics ("doing" vs. anthropometry: "being")

Psychology: influence of mental conditions Others: social, climate, religion, etc.

Cont. Human Factors: Overview • Objectives of Human Factors (HF):

- Increase work efficiency
 - Increase effectiveness of work
 - Increase convenience and ease of use of machines
 - Increase productivity
 - Decrease errors
- Study influence of design on people
- Change designs to suit human needs, limitations
- Increase human values:
 - Increase safety
 - Increase comfort
 - Increase job satisfaction
 - Decrease fatigue and stress
 - Increase quality of life

Human factors, definitions Definition 1:

- Systematic application of information about human:
 - Capabilities, limitations, and characteristics to the design of:
 - objects and procedures that people use,
 - and the environment in which they use them

Definition 2:

- HF discovers and applies information about human:
 - Behavior, abilities, limitations, other characteristics to the design of:
 - tools, machines, systems, jobs, tasks, environments for:
 - productive, safe, comfortable, effective human use

Human Factors: Characteristics HF involves study of:

- Human response to environment
- Response as a basis for design, improvements
- Characteristics of HF:
 - Machines must be built to serve humans (not opp.)
 - Design must take human differences into account
 - Designs influence humans
 - Design process must include data and calculations
 - Human data must be tested scientifically
 - Humans and machines are related
 - NOT just check lists and guidelines
 - NOT: using oneself as model for design

NOT just common sense

Human Factors: History (US)

- Early 1900's: Frank and Lilian Gilbreth:
 - Design of workstations for disabled (e.g. surgery)
- After WWII (1945): HF profession was born
- 1949: HF books, publications, conferences, e.g.:
 - HF in Engineering Design, 1949
 - HF Society (largest HF professional group), 1957
- 1960-80: emphasis moved from military to industry:
 - Pharmaceuticals, computers, cars, etc.
- ▶ 1980–90: HF in PC revolution
 - "ergonomically-designed" equipment, software
 - HF in the office
 - Disasters caused due to HF considerations
 - e.g. Chernobyl, Soviet Union, 1986
 - HF in forensics (injury litigations, defective designs)
- >1990's:
 Medical
 OSHA er
 - Medical devices, devices for elderly
 - OSHA ergonomic regulations

Human Factors: Profession

- HF Society members:
 - Psychology: 45.1%
 - Engineering: 19.1%
- People performing HF work (in general)
 - Business (private): 74%
 - Government: 15%
 - Academia: 10%

Human-Machine Systems

- System (Defⁿ):
 - "Entity that exists to carry out some purpose"
 - Components: humans, machines, other entities
 - Components must integrate to achieve purpose (i.e. not possible by independent components):
 - Find, understand, and analyze purpose
 - Design system parts
 - System must meet purpose
- Machine (Defⁿ):
 - Physical object, device, equipment, or facility
 - used to perform an activity
- Human-Machine system (Defⁿ):
 - $\circ \geq 1$ Human $+ \geq 1$ physical component
 - Interaction using given input/command
 - Result: desired output

e.g. man + nail + hammer to hang picture on wall *See Figure 1-1, pp. 15 (Sanders and McCormick)*

Cont. Human-Machine Systems

- Types of HM systems:
 - Manual systems:
 - operator + hand tools + physical energy
 - Mechanical systems (AKA semiautomatic systems):
 - operator (control) + integrated physical parts e.g. powered machine tools
 - Automated systems:
 - little or no human intervention (e.g. Robot)
 - Human: installs programs, reprograms, maintains, etc.
 Consider broomstick vs vacuum vs Roomba[™]

HM System Characteristics

- Systems are purposive
 - Systems have ≥ 1 objective
- Systems can be hierarchical
 - Systems may have subsystem levels (1, 2, etc.)
- Systems operate in environment (i.e. inside boundary)
 - Immediate (e.g. chair)
 - Intermediate (e.g. office)
 - General (e.g. city)
- Components serve functions
 - Sensing (i.e. receiving information; e.g. speedometer)
 - Information storage (i.e. memory; e.g. disk, CD, flash)
 - Information processing and decision
 - Action functions (output)
 - Physical control (i.e. movement, handling)
 - Communication action (e.g. signal, voice)

See Figure 1–2, pp. 17 (Sanders and McCormick)

HM System Characteristics

Cont. HM System Characteristics

- Components interact
 - components work together to achieve a goal
 - components are at lowest level of analysis
- Systems, subsystems, components have I/O
 - I: input(s)
 - O: output(s)
 - O's of 1 system: can be I's to another system
 I's:
 - Physical (materials)
 - Mechanical forces
 - Information

Types of HM Systems

- Closed-loop systems
 - Require continuous control
 - Require continuous feedback (e.g. errors, updates, etc.)
 - e.g. car operation
- Open-loop systems
 - Need no further control (e.g. car cruise-control)
 - Feedback causes improved system operation

System Reliability

- Defn: "probability of successful operation"
- Measure #1:
 - success ratio
 - e.g. ATM gives correct cash:
 9999 times out of 10,000 ⇒ Rel. = 0.9999
 - Usually expressed to 4 d.p.
- Measure # 2:
 - mean time to failure (MTF)
 - i.e. # of times system/human performs successfully (before failure)
 - Used in continuous activity

System Rel.: Components in Series

- Successful operation of system ⇒ Successful operation of ALL components (i.e. machines, humans, etc.)
- Conditions:
 - Failure of 1 component \Rightarrow failure of complete system!
 - Failures occur independently of each other
- Rel. of system = Product of Rel. of all components
- e.g. System has 100 components
 - components all connected in series
 - Rel. of each component = 99%
 - \Rightarrow Rel. of system = 0.365 (why?)
 - i.e. system will only work successfully: 365 out of 1,000 times!
 - Conclusions:
 - more components \Rightarrow less Rel.
 - Max. system Rel. = Rel. of least reliable component
 - least Rel. component is usually human component (weakest link)
 - In reality, system Rel. \ll least Rel. component

System Rel: Components in Parallel

- ≥ 2 components perform same functions
 - AKA: backup redundancy (in case of failure)
- System failure \Rightarrow failure of ALL components
- e.g. System has 4 components
 - components connected in //
 - Rel. of each = 0.7
 - $\circ \Rightarrow$ System Rel. =
 - $1 (1 \text{Rel}_{c1})(1 \text{Rel}_{c2})(1 \text{Rel}_{c3})(1 \text{Rel}_{c4}) = 0.992$
 - Conclusions
 - more components in // \Rightarrow higher Rel.
 - Note, Rel. \downarrow with time (e.g. 10-year old car vs. new)

