

<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

RONDING IN CAPRON COMPOLINDS

CARBO	N-NITROGEN BON		ARING IN	SAKENN S	SWIL SHIRES
o The el	lectronic configuration	n of nitroger	n atom is 1s²2	s ² 2p _x ¹ 2p _y ¹ 2p _z ¹	
		 С—N	C=N	c≡n	
	Bond length (A)	1.47	1.29	1.16	
	Bond energy (kJ)	305	616	893	
					12

INDUCTIVE EFFECT \circ Inductive effects are electronic effects that occur through sigma σ bonds caused by electronegativity differences of atoms. δδδδ+ δδδ+ δδ+ δ+ δ- $H_3C \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_2$ Types of inductive effect: 1) Negative inductive effect (-I): This is the electron-withdrawing inductive effect, also known as the -/ effect $NH_3^+ > NO_2 > CN > SO_3H > CHO > CO > COOH > COCI > CONH_2 >$ $F > CI > Br > I > OH > OR > NH_2 > C_6H_5 > H$ 2) Positive inductive effect (+I): This is electron releasing character and is indicated by the +/ effect $C(CH_3)_3 > CH(CH_3)_2 > CH_2CH_3 > CH_3 > H$ 14

RESONANCE OR MESOMERIC EFFECT

 \circ The resonance effect is defined as 'the polarity produced in the molecule by the interaction of two π -bonds or between a π -bond and lone pair of electrons present on an adjacent atom'.

(i) Positive Resonance Effect (+R effect):

The transfer of electrons is away from an atom or substituent group attached to the conjugated system.

Examples; – halogen, –OH, –OR, –OCOR, –NH₂, –NHR, –NR₂, –NHCOR,

(ii) Negative Resonance Effect (- R effect):

The transfer of electrons is towards the atom or substituent group attached to the conjugated system.

Examples; - COOH, -CHO, >C=O, - CN, -NO₂

HYPERCONJUGATION

- \circ It involves delocalization of σ electrons of C–H bond of an alkyl group directly attached to an atom of unsaturated system or to an atom with an unshared *p* orbital.
- $CH_3CH_2^+$ (ethyl cation); the positively charged carbon atom has an empty *p* orbital. One of the C-H bonds of the methyl group can align in the plane of this empty *p* orbital and the electrons constituting the C-H bond in plane with this *p* orbital can then be delocalized into the empty p orbital.

HYPERCONJUGATION

- $\circ\,$ This type of overlap stabilizes the carbocation because electron density from the adjacent σ bond helps in dispersing the positive charge.
- \circ In general, greater the number of alkyl groups attached to a positively charged carbon atom, the greater is the hyperconjugation interaction and stabilization of the cation.

$$CH_{3} - CH_{3} + CH_{3}CH_{2} + CH_{3}CH_{3} + C$$

 $\circ\;$ Hyperconjugation is also possible in alkenes and alkylarenes.

TYPES OF ORGANIC REACTIONS

1) Substitution Reactions

- a. Nucleophilic substitution
- b. Electrophilic substitution
- c. Free-radical substitution

2) Addition Reactions

- a. Nucleophilic addition
- b. Electrophilic addition
- c. Free-radical addition
- **3) Elimination Reactions**
- 4) Rearrangement reactions

20

REACTIVE INTERMEDIATE

REACTIVE INTERMEDIATE

CARBANION Stability of Carbanion

 $\circ\;$ The main features that serve to stabilize carbanions are

aromatization

the cyclopentadienyl anion, being a 6π electron delocalized system, The 6 electrons can be accommodated in three stabilized π molecular orbitals, like benzene, and the anion thus shows quasi-aromatic stabilization; it is stabilized by *aromatization*:

REACTIVE INTERMEDIATE

FREE RADICALS

- o Radicals are species that contain one or more unpaired electrons.
- Many radicals are produced by homolytic cleavage of bonds.

$$Cl_2 \xrightarrow{h\nu} 2Cl$$

 Hydrogen abstraction; many radicals can remove hydrogen atoms from organic molecules to form carbon radicals.

$$F \cdot + CH_4 \longrightarrow HF + \cdot CH_3$$

NUCLEOPHILES AND ELECTROPHILES

ELECTROPHILES

- Electrophile (E⁺); (electron-loving) are electron-deficient species and tend to attack the substrate at a site of high electron density and the reaction is called electrophilic.
- o Examples of electrophiles include
 - Positively charged species as exemplified by proton (H⁺), cations (such as Cl⁺, NR₄⁺) and carbocations (⁺CH₃) and
 - Neutral species as exemplified by Lewis acids (such as BF₃, AlCl₃, ZnCl₂) and carbenes (Cl₂C:) or neutral molecules having functional groups like carbonyl group (>C=0) or alkyl halides (R₃C-X, where X is a halogen atom).
- They have six valence electrons (except H⁺) and can accept an electron pair from a nucleophile to acquire the stable octet.
- $\circ\;$ For example, hydroxide ion combines with a proton to give water.

NUCLEOPHILES AND ELECTROPHILES

NUCLEOPHILES AND ELECTROPHILES

NUCLEOPHILICITY AND BASICITY?

Strong Bases/Strong Nucleophiles

A good base is usually a good nucleophile. So, strong bases – substances with negatively

charged O, N, and C atoms - are strong nucleophiles.

Examples are: RO^- , OH^- , RLi, $RC \equiv C:^-$, and NH_2^- .

Strong Bases/Poor Nucleophiles

Some strong bases are poor nucleophiles because of steric hindrance.

Examples are t-BuO⁻, t-BuLi, and LiN[CH(CH₃)₂]

Weak Bases/Good Nucleophiles

I[−] is a weak base, but it is a good nucleophile because the large electron cloud is highly polarizable.

WHY DO THESE REACTIONS OCCUR? THERMODYNAMIC AND KINETIC REQUIREMENT OF A REACTION

- \circ When we look at an organic reaction we have to take into account two main concepts:
 - The equilibrium
 - The rate of the reaction.
- \circ The conversion between reactants and products is governed by the reaction free energy ΔG (free energy of the products) (free energy of the reactants).
 - A reaction is thermodynamically allowed when the free energy of the products is lower than that of the reactants (i.e. ΔG is negative).
 - When ΔG = zero, the equilibrium is reached and an equilibrium constant K_{eq} of the reaction can be defined as a function of ΔG° , the variation in the standard free energies.

The equilibrium constant $K_{\rm eq}$ is the ratio between the equilibrium concentration of the products and that of the reactants.

WHY DO THESE REACTIONS OCCUR? THERMODYNAMIC AND KINETIC REQUIREMENT OF A REACTION

For a reaction to take place spontaneously; the free energy of the products must be lower than the free energy of the reactants; i.e., ΔG must be negative.

 \circ The Gibbs standard free-energy (Δ G) change has an enthalpy component and an entropy component, which are related by the following equation:

$$\Delta G^{\circ} = -RT \ln K_{eq} = \Delta H - T \Delta S$$

The enthalpy term (Δ H);

When new bonds are formed, heat is given off and when bonds are broken, heat is consumed.

Thus, ΔH is a measure of the bond-making and bond-breaking processes that occur as reactants are converted into products.

Entropy (ΔS) is defined as the degree of disorder of a system.

Table !	5.2 Explanatio	Explanation of Thermodynamic Quantities: $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$			
Term	Name	Explanation			
ΔG°	Gibbs free-energy change	The energy difference between reactants and products. When ΔG° is negative, the reaction is exergonic , has a favorable equilibrium constant, and can occur spontaneously. When ΔG° is positive, the reaction is endergonic , has an unfavorable equilibrium constant, and cannot occur spontaneously.			
∆H°	Enthalpy change	The heat of reaction, or difference in strength between the bonds broken in a reaction and the bonds formed. When ΔH° is negative, the reaction releases heat and is exothermic . When ΔH° is positive, the reaction absorbs heat and is endothermic .			
ΔS°	Entropy change	The change in molecular randomness during a reaction. When ΔS° is negative, randomness decreases; when ΔS° is positive, randomness increases			

and the second se	e bonu Dissociation	Dissociation Energies, D			
Bond	D (kJ/mol)	Bond	D (kJ/mol)	Bond	D (kJ/mol)
н—н	436	(CH ₃) ₃ C-1	209	C ₂ H ₅ -CH ₃	355
H—F	570	H ₂ C=CH-H	444	(CH ₃) ₂ CH-CH ₃	351
н—сі	432	H ₂ C=CH-CI	368	(CH ₃) ₃ CCH ₃	339
H—Br	366	H ₂ C=CHCH ₂ -H	361	H ₂ C=CH-CH ₃	406
н—1	298	H ₂ C=CHCH ₂ -CI	289	H ₂ C=CHCH ₂ -CH ₃	310
CI-CI	243	Н		H ₂ C=CH ₂	611
Br—Br	193		464	CH3	
1-1	151				427
CH3-H	438	n n		\sim	
CH3-CI	351		405	CH2-CH3	
CH ₃ —Br	293	\sim			332
CH3-I	234	CH2-H		\sim	
CH3-OH	380	L T	368	Q	
CH3-NH2	335			CH2C-H	368

C ₂ H ₅ -H	420	CH2-CI		HO-H	498
C ₂ H ₅ -CI	338		293	HO-OH	213
C ₂ H ₅ —Br	285	~		CH-O-H	437
C2H5-1	222	Br		CH-S-H	271
C2H5-OH	380		337	C-H-O-H	436
(CH ₃) ₂ CH-H	401	\sim		021150 11	4.00
(CH ₃) ₂ CH-CI	339	OH			322
(CH ₃) ₂ CH—Br	274		469	CH3C - CH3	
(CH ₃) ₃ C-H	390	~		CH3CH20-CH3	339
(CH3)3C-CI	330	HC=C-H	552	NH ₂ —H	449
(CHa)aC-Br	263	CH ₂ -CH ₂	376	H-CN	518

