
CSC 476
COMPUTER GRAPHICS

Abdel Monim Artoli

COURSE INFORMATION

• Credit hours (3 0 1)

• Lectures: Sundays, Tuesdays and Thursdays 1:00 – 1:55 PM

• Tutorials Sundays 4:00 to 5:00 PM

• Office hours: Sunday 8:30 to 9:30 AM and 2:00 to 3:00 PM

• Office # 2127

• email address: aartoli@ksu.edu.sa

CLOS

1. Understand the structure of modern computer graphics systems

2. Understand the basic principles of implementing computer graphics primitives

3. Familiarize and explore key algorithms for modelling and rendering graphical data

4. Build Development, design and problem solving skills in computer graphics.

5. Gain experience in constructing interactive computer graphics programs using

OpenGL

COURSE DESCRIPTION

An introduction to computer graphics,

• Introduction to Computer Graphics

• emphasis on application programming using OpenGL library.

• Graphics Display Devices

• Drawing Based Graphics Primitives

• Transformation of Object

• 3D Affine Transformation

• Three-Dimensional Viewing

• Tools for Raster Displays

• Scan conversion Algorithms

• Defining and Filling Regions of Pixel

• Filling Polygon Defined Regions.

• Aliasing :Anti-aliasing Techniques.

• Creating more Shades and Colors

PRE-REQUISITES

• CSC 212 Data structure

• A working programming skill

• Willing to use OpenGL

• Enough mathematical backgrounds on

• Arrays and matrices

• Coordinate systems

• Vectors

• surfaces

COURSE MATERIALS

• Main text

• Hill, J.S. Jr., Computer Graphics Using OpenGL, 3rd Edition, Pearson

• KSU bookstore

• Essentials

• Foley et al: Computer Graphics : principles and practice, 2nd edition AW

• OpenGL programming Guide Shrener et al, 5th edition.

• It is handy to have your laptop with OpenGL installed during tutorials.

COURSE POLICY

• Attendance is mandatory. 25% absence will lead to denial to enter the final
exam.

• Starting date: Jan. 18th , 2020

• Exam times:

• Midterm #1 : Sunday Feb 7, 2020 20%

• Midterm#2: Sunday March 4, 2020 20%

• Projects and assignment Due: April 1st, 2020 20%

• End of Semester Exam, as scheduled on the Edugate.

BREAKDOWN
w topic w topic

1 Introduction to

Computer Graphics

8 Tools for Raster Displays

2 OpenGL 9 Scan conversion Algorithms

3 Graphics Display

Devices

10 Defining and Filling Regions

of Pixel

4 Basic Graphics Primitives 11 Filling Polygon Defined

Regions.

5 Transformation of

Objects

12 Aliasing :Anti-aliasing

Techniques

6 3D Affine Transformation 13 Creating more Shades and

Colors

7 Three-Dimensional

Viewing

14 Advanced topics

1. INTRODUCTION

• Two midterms =40

• One multi-level projects =20

• Work in pairs is allowed (three are not allowed, assignments must be individually
solved).

• I will check similarities of delivered materials. A zero penalty is enforced if traces
of similarity are evident.

• Project delivery on Week 10. Late delivery will be penalized with 10% each week.

• Final = 40

• It is handy to have your laptop with openGl already installed before we start
the class tutorials.

EVERYTHING IN A DIGITAL MEDIA
THAT IS NOT TEXT OR SOUND!

• 1960, Verne Hudson and William Fetter (Boeing)

• user interface design

• sprite graphics

• vector graphics,

• 3D modeling,

• shaders,

• GPU design,

• implicit surface visualization with ray tracing,

• and computer vision,

https://en.wikipedia.org/wiki/User_interface_design
https://en.wikipedia.org/wiki/Sprite_(graphics)
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/3D_modeling
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Implicit_surface
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Computer_vision

BEGINNING

Lumiere brothers-1895‘

CRT -1897 CG as a discipline in 1950s

Whirlwind and SAGE Projects Tennis for Two HP

https://en.wikipedia.org/wiki/Lumiere_brothers
https://en.wikipedia.org/wiki/Whirlwind_(computer)
https://en.wikipedia.org/wiki/SAGE_Project
https://en.wikipedia.org/wiki/Tennis_for_Two

2018PHYSICALLY-BASED
RENDERING (PBR)

https://youtu.be/GVNnfZG4riw

https://youtu.be/GVNnfZG4riw

WHAT MAKES AN IMAGE?
• Software tools

• OS
• Editor
• Compiler
• Debugger

• Hardware accessories
• Input devices:

• Mouse/trackball,
• pen/drawing tablet,
• keyboard

• Output devices:
• Video monitors
• printers

WHY CG?

• Better perception

• Useful representation

• Realization

• Art

• Communication

• Medical applications

• Military applications

• Human future “smart world”

REASONS TO STUDY CG

• Better information presentation

• Job in computer graphics (games, movies, …etc)

• New medium for artistic expression

• Communicate ideas better

• Get a grade??

USES OF COMPUTER GRAPHICS

• Art, entertainment, publishing:

• movies, TV, books, magazines, games

Courtesy:

Pixar.com,Quake3world.com

USES OF COMPUTER GRAPHICS

• Image processing:

• alter images, remove noise

USES OF COMPUTER GRAPHICS

• Process monitoring:

• large systems or plants

Courtesy:

Dataviews.de

USES OF COMPUTER GRAPHICS

• Display simulations:

• flight simulators, virtual worlds

Courtesy: Evans and Sutherland

USES OF COMPUTER GRAPHICS

• Computer-aided design:

• architecture, electric circuit design

Courtesy:

cadalog.com

USES OF COMPUTER GRAPHICS

Courtesy:

A.M. Artoli

COURTESY AM ARTOLI

CG USE EXAMPLE

• Animated movies

• Toy story

• Special effects

• Terminator 3

•

http://www.apple.com/trailers/wb/t3/domestictrailer/

ELEMENTS OF CG

• Polylines: connected straight lines (edges, vertices)

• Text: font, typeface

• Filled regions: colors, patterns

• Raster images: pixels have values (pixmap)

COMPUTER GRAPHICS

• Functions/routines to draw line or circle, … etc

• Elaborate: pull-down menus, 3D coordinate system,… etc

• Previously device-dependent
• Difficult to port

• Error Prone

• Now device-independent libraries
• APIs: OpenGL, DirectX, java3D

REFERENCES

• Hill, Chapter 1

3

GRAPHICS LIBRARIES

WHAT IS A GRAPHICS LIBRARY?

• A library is a non-volatile resource used by computer programs for software
development for:

• configuration data

• documentation,

• pre-written code and subroutines, classes, values or type specifications …etc.

• Computer graphics library

• A program library designed for rendering computer graphics primitives to an
output device (monitor)

EXAMPLE GRAPHICS LIBRARIES

• OPENGL, OPENGL ES

• DirectX

• Managed Direct X (.NET) No support

• Supported .NET (via 3rd parities)
• SlimDx
• SharpDx
• Windows API codePack for .NET

• Vulkan (GDC 2015) 1.1 in March this year (2018(
• Higher performance+ load balancing

• Lower level API

• Facilitates parallelization
• Available for many platforms ~Platform independent

• Metal

DirectX Raytracing (DXR)
https://en.wikipedia.org/wiki/DirectX

www.khronos.org

https://en.wikipedia.org/wiki/Game_Developers_Conference
https://en.wikipedia.org/wiki/DirectX
http://www.khronos.org/

GL ON OS

OS Vulkan Direct X GNMX Metal

Windows 10
Free, Nvidia and
AMD

Free, MS no no

Mac Paid,[1] MoltenVK no no Free, Apple

GNU/Linux Free no no no

Android Free no no no

iOS Paid,[1] MoltenVK no no Free, Apple

Tizen in Development no no no

Sailfish in Development no no no

Xbox One no Free no no

Orbis OS (PS4) no no Free no

Nintendo Switch Free no no no

Source: Wikipedia

https://en.wikipedia.org/wiki/Vulkan_(API)
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Metal_(API)
https://en.wikipedia.org/wiki/Graphics_library#cite_note-moltenvk-1
https://en.wikipedia.org/wiki/Graphics_library#cite_note-moltenvk-1
https://en.wikipedia.org/wiki/PlayStation_4_system_software
https://en.wikipedia.org/wiki/Nintendo_Switch

GAMES USING VULKAN

• https://youtu.be/Z4V_JwtuA2c

• First usage:talos Principle

• Dota2

https://youtu.be/Z4V_JwtuA2c

OPENGL VS VULKAN

• https://youtu.be/fgsCbV12tCc

https://youtu.be/fgsCbV12tCc

CPU VS GPU

cc

MINI PROJECT 1
5 MARKS – DUE DATE NEXT SUNDAY

• Installing and comparing different graphics library

• Which graphics card exists on your computer/laptop.
• For this assignment, you need at least a 6ths generation intel processor or

equivalent

• Give and explain all the details of your graphics card.

• Install the most updated version of your card. You may need to visit your
vendor’s website.

• Install the latest possible OPENGL library and test it. Summarize the installation
details on a readme file. Give a performance analysis of your card. You
need to search the internet on how to do that.

• If it is possible, try installing Vulkan and compare the performance of your
card using a game which support Vulkan

L#4

• Objectives

• To get started writing programs that produce pictures

• To learn basics of OPENGL primitives

• Draw lines, polylines and polygons

• Interactivity

2D VS. 3D

• 2D:

• Flat

• (x,y) color values on screen

• Objects no depth or distance from viewer

• 3D

• (x,y,z) values on screen

• Perspective: objects have distances from
viewer

CREATING 2D

• Lines

• Point to point

• Line(x1,y1,x2,y2)
• Moving to

• Move(x1,y1);

• lineTo(x2,y2);

CREATING 3D

• Start with 3D shapes (modeling)

• Basic shapes(cube, sphere, etc), meshes, etc

• Scale them (may also stretch them)

• Position them (rotate them, translate, etc)

• Then, render scene (realism)

• Perspective

• Color and shading

• Shadows

• Texture mapping

• Fog

• Transparency and blending

• Anti-aliasing

• Practical note: modeling and rendering packages being sold (Maya, 3D studio max, etc)

3D MODELING EXAMPLE: ROBOT
HAMMER

base

lower arm

hammerA Robot Hammer!

3D MODELING EXAMPLE:
POLYGONAL MESH

Original: 424,000

triangles

60,000 triangles

(14%).

1000 triangles

(0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

3D EFFECTS EXAMPLE: TEXTURING

3D EFFECTS EXAMPLE: SHADOWS

OPENGL BASICS

• OpenGL’s primary function – rendering

• Rendering? – Convert geometric/mathematical object descriptions into
images

• OpenGL can render:
• Geometric primitives (lines, dots, etc)

• Bitmap images (.bmp, .jpg, etc)

OPENGL BASICS

• Application Programming Interface (API)

• Low-level graphics rendering API

• Widely used – will be used in this class

• Maximal portability

• Display device independent

• Window system independent based (Windows, X, etc)

• Operating system independent (Unix, Windows, etc)

• Event-driven

OPENGL: EVENT-DRIVEN

• Program only responds to events

• Do nothing until event occurs

• Example Events:
• mouse clicks

• keyboard stroke

• window resize

• Programmer:

• defines events

• actions to be taken

• System:

• maintains an event queue

• takes programmer-defined actions

OPENGL: EVENT-DRIVEN

• Sequential program
• Start at main()

• Perform actions 1, 2, 3…. N

• End

• Event-driven program
• Initialize

• Wait in infinite loop

• Wait till defined event occurs

• Take defined actions

• World’s most popular event-driven program?

OPENGL: EVENT-DRIVEN

• How in OpenGL?
• Programmer registers callback functions

• Callback function called when event occurs

• Example:
• Declare a function myMouse to respond to

mouse click

• Register it: Tell OpenGL to call it when mouse
clicked

• Code ? glutMouseFunc(myMouse); /*you nrrf
to do it yourself here*/

GL UTILITY TOOLKIT (GLUT)

• OpenGL
• is window system independent

• Concerned only with drawing

• No window management functions (create, resize, etc)

• Very portable

• GLUT:
• Minimal window management: fast prototyping

• Interfaces with different windowing systems

• Allows easy porting between windowing systems

• GLUI:
• Needs GLUT

• User interface library to add more sophisticated controls and menues

GL UTILITY TOOLKIT (GLUT)

• No bells and whistles
• No sliders

• No dialog boxes

• No menu bar, etc

• To add bells and whistles, need other API:
• X window system

• Apple: AGL

• Microsoft :WGL, etc

PROGRAM STRUCTURE

• Configure and open window (GLUT)

• Initialize OpenGL state

• Register input callback functions (GLUT)
• Render

• Resize

• Input: keyboard, mouse, etc

• My initialization
• Set background color, clear color, drawing color, point size, establish coordinate

system, etc.

• glutMainLoop()
• Waits here infinitely till action is selected

GLUT: OPENING A WINDOW
• GLUT used to open window

• glutInit(&argc, argv);
• initializes

• glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
• sets display mode (e.g. single buffer with RGB)

• glutInitWindowSize(640,480);
• sets window size (WxH)

• glutInitPosition(100,150);
• sets upper left corner of window

• glutCreateWindow(“my first attempt”);
• open window with title “my first attempt”

OPENGL SKELETON
void main(int argc, char** argv){

// First initialize toolkit, set display mode and create window

glutInit(&argc, argv); // initialize toolkit

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640, 480);

glutInitWindowPosition(100, 150);

glutCreateWindow(“my first attempt”);

// … then register callback functions,

// … do my initialization

// .. wait in glutMainLoop for events

}

GLUT CALLBACK FUNCTIONS

• Register all events your program will react to

• Event occurs => system generates callback

• Callback: routine system calls when event occurs

• No registered callback = no action

GLUT CALLBACK FUNCTIONS

• GLUT Callback functions in skeleton
• glutDisplayFunc(myDisplay): window contents need to be redrawn

• glutReshapeFunc(myReshape): called when window is reshaped

• glutMouseFunc(myMouse): called when mouse button is pressed

• glutKeyboardFunc(mykeyboard): called when keyboard is pressed or released

• glutMainLoop(): program draws initial picture and enters infinite loop till
event

EXAMPLE: RENDERING CALLBACK

• Do all your drawing in the display function

• Called initially and when picture changes (e.g.resize)

• First, register callback in main() function
glutDisplayFunc(display);

• Then, implement display function
void display(void)
{ // put drawing stuff here
…….
glBegin(GL_LINES);

glVertex3fv(v[0]);
glVertex3fv(v[1]);

……………

glEnd();
}

OPENGL SKELETON

void main(int argc, char** argv){

// First initialize toolkit, set display mode and create window
glutInit(&argc, argv); // initialize toolkit

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640, 480);

glutInitWindowPosition(100, 150);

glutCreateWindow(“my first attempt”);

// … now register callback functions
glutDisplayFunc(myDisplay);

glutReshapeFunc(myReshape);

glutMouseFunc(myMouse);

glutKeyboardFunc(myKeyboard);

myInit();

glutMainLoop();

}

REFERENCES

• Hill, chapter 2

TUTORIAL

• Install GLFW

• https://youtu.be/OR4fNpBjmq8

• Get familiar with Blender https://www.youtube.com/watch?v=TPrnSACiTJ4

https://youtu.be/OR4fNpBjmq8
https://www.youtube.com/watch?v=TPrnSACiTJ4

