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ABSTRACT

In this paper, we study the scaling properties of Legendre polynomials Pn(x). We
show that Pn(λx), where λ is a constant, can be expanded as a sum of either Leg-
endre polynomials Pn(x) or their multiple derivatives dkPn(x)/dx

k, and we derive a
general expression for the expansion coefficients. In addition, we demonstrate that
the multiple derivative dkPn(x)/dx

k can also be expressed as a sum of Legendre
polynomials and we obtain a recurrence relation for the coefficients.

KEYWORDS

Legendre Polynomials, scaling property, multiple derivative, expansion.

1. Introduction

The central importance of Legendre polynomials in many fields of pure and applied
sciences is undoubtedly well-established. Consequently, their properties have been ex-
tensively investigated over several decades [1,2], and still remain a matter for numerous
studies [3–8]. To our knowledge, though, the scaling properties of Legendre polynomi-
als, hereafter denoted as Pn(x), have not been reported in the literature so far. The
purpose of this work is to derive explicit expressions for Pn(λx), where λ is a constant.
Such expressions appear to be very useful for deriving an analytical representation for
the projection of spherical harmonics onto a plan. In this paper, we show that Pn(λx)
can be expanded either as a sum of Legendre polynomials Pn(x) or their multiple
derivatives:

Pn(λx) =

⌊n/2⌋
∑

k=0

aλ,n,k
dk

dxk
Pn−k(x) =

⌊n/2⌋
∑

k=0

bλ,n,kPn−2k(x), (1)

and we derive an expression for the expansion coefficients aλ,n,k and bλ,n,k. In addition,
we demonstrate that the multiple (kth) derivative of Legendre polynomials of degree
n can also be expressed as a sum of Legendre polynomials:

dk

dxk
Pn(x) =

⌊(n−k)/2⌋
∑

i=0

αn−k−2iPn−k−2i(x), (2)
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and we derive a recurrence relation for the coefficients αn−k−2i.

2. Proof

2.1. Scaling properties

Using Rodrigues’ formula, Legendre polynomials Pn(λx) of degree n can be written
as [1]:

Pn(λx) =
1

2nn!

dn

d(λx)n
[

(λ2x2 − 1)n
]

. (3)

By recognizing that d(λx)n = λndxn and λ2x2 − 1 = λ2(x2 − 1)+ λ2 − 1, equation (3)
can be rewritten as:

Pn(λx) =
1

2nn!
λn dn

dxn

[(

(x2 − 1) +
λ2 − 1

λ2

)n]

. (4)

In the previous equation, the polynomial of degree n being derived can be expanded
as a sum of n+ 1 terms:

(

(x2 − 1) +
λ2 − 1

λ2

)n

=

n
∑

k=0

αk(x
2 − 1)k, (5)

whose expansion coefficients, αk, can be related to the product of its unique root
(λ2 − 1)/λ2 using Vieta’s formula [9]. It can be shown that:

αk =

(

n

k

)(

λ2 − 1

λ2

)n−k

. (6)

From equations (4), (5), and (6), it follows that:

Pn(λx) =
1

2nn!

dn

dxn

n
∑

k=0

(

n

k

)

(λ2 − 1)n−k

λn−2k
(x2 − 1)k. (7)

By interchanging the order of the derivation and the sum in equation (7) and recog-
nizing that the nth derivative of the polynomial (x2 − 1)k vanishes for k lower than
⌈n/2⌉, we obtain:

Pn(λx) =

n
∑

k=⌈n/2⌉

1

2nn!

(

n

k

)

(λ2 − 1)n−k

λn−2k

dn

dxn
(x2 − 1)k. (8)

Recognizing the Rodrigues representation of the Legendre polynomial of degree k in
the previous equation and substituting for Pk(x), we obtain:

Pn(λx) =

n
∑

k=⌈n/2⌉

1

2n−k(n− k)!

(λ2 − 1)n−k

λn−2k

dn−k

dxn−k
Pk(x), (9)
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which can be rewritten as:

Pn(λx) =

⌊n/2⌋
∑

k=0

aλ,n,k
dk

dxk
Pn−k(x), (10)

with

aλ,n,k =
λn−2k(λ2 − 1)k

2k(k)!
. (11)

Equation (10) shows that Pn(λx) can be expressed as a sum of multiple derivatives of
Legendre polynomials, which, in turn, can be expanded as a sum of Legendre Polyno-
mials, as proved in the following section. It will be shown that:

dk

dxk
Pn−k(x) =

⌊(n−2k)/2⌋
∑

i=0

αn−2k−2iPn−2k−2i(x) (12)

with

αn−2k−2i =
2k+2i(n− k − 1/2)k(n− k − i)i(n− 2k − 1/2)2i

(2i)2i(n− k − 1/2)i

−

i−1
∑

l=0

(2(n − 2k − i− l))2(i−l)

(2(i− l))2(i−l)
αn−2k−2l. (13)

Combining equations (10), (11), and (12), it follows that:

Pn(λx) =

⌊n/2⌋
∑

k=0

λn−2k(λ2 − 1)k

2k(k)!

⌊(n−2k)/2⌋
∑

i=0

αn−2k−2iPn−2k−2i(x). (14)

Finally, after rearranging the terms in the second sum of the previous equation, we
obtain the following:

Pn(λx) =

⌊n/2⌋
∑

k=0

bλ,n,kPn−2k(x) (15)

where,

bλ,n,k =

max{(k−1),0}
∑

i=0

λn−2k+2i

2k−i(k − i)!
(λ2 − 1)k−iαn,k,i, (16)
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and

αn,k,i =
2k+i(n− k + i− 1/2)k−i(n− k)i(n− 2k + 2i− 1/2)2i

(2i)2i(n− k + i− 1/2)i

−

i−1
∑

l=0
i 6=0

(2(n − 2k + i− l))2(i−l)

(2(i− l))2(i−l)
αn,k−i+l,l. (17)

2.2. Multiple derivative of Legendre polynomials

From the recurrence relations [9]:

(n+ 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0, and (18)

(x2 − 1)
d

dx
Pn(x) = n [xPn(x)− Pn−1(x)] ,

it can be shown that:

d

dx
[Pn+1(x)− Pn−1(x)] = (2n + 1)Pn(x). (19)

From the previous equation, it follows that:

d

dx
Pn(x) =

2Pn−1(x)

||Pn−1||2
+

2Pn−3(x)

||Pn−3||2
+

2Pn−5(x)

||Pn−5||2
+ ..., (20)

where ||Pn|| =
√

2/(2n + 1). By recursively deriving equation (20), we finally obtain:

dk

dxk
Pn(x) =

⌊(n−k)/2⌋
∑

i=0

αn−k−2iPn−k−2i(x) (21)

The expansion coefficients αn−k−2i can be determined by replacing the Legendre poly-
nomials on each side of the previous equation with their corresponding hypergeometric
series [1] and matching the coefficients of each term. Using Murphy’s formula, Legendre
polynomials can be written as:

Pn(x) = 2F1(−n, n+ 1, 1; (1 − x)/2) =

∞
∑

j=0

(−n)j(n + 1)j
(1)j

[(1− x)/2]j

j!
, (22)

where (a)j denotes the rising factorial. By setting z = (1− x)/2, and recognizing that
dzk = (−1/2)kdxk, the kth derivative of the Legendre polynomial of degree n with

4



respect to the variable x is given by:

dk

dxk
Pn(x) =

dk

dzk
dzk

dxk
2F1(−n, n+ 1, 1; (1 − x)/2)

=

(

−
1

2

)k dk

dzk
2F1(−n, n+ 1, 1; z)

=

(

−
1

2

)k (−n)k(n+ 1)k
k!

2F1(−n+ k, n + 1 + k, 1 + k; z)

=

(

n

k

)

(n+ 1)k
2k

2F1(−n+ k, n + 1 + k, 1 + k; z). (23)

By recognizing that the rising factorial (−n+ k)i is equal to zero for i ≥ n− k+ 1, it
then follows that:

dk

dxk
Pn(x) =

(

n

k

)

(n+ 1)k
2k

n−k
∑

j=0

(−n+ k)j(n+ 1 + k)j
(1 + k)j

zj

j!
. (24)

The same reasoning can be applied to the right side of equation (21), leading to:

Pn−k−2i(x) = 2F1(−n+ k + 2i, n − k − 2i+ 1, 1; z)

=

n−k−2i
∑

j=0

(−n+ k + 2i)j(n− k − 2i+ 1)j
(1)j

zj

j!
(25)

By matching the coefficients of each term in equations (24) and (25), we obtain a set
of (n− k) coupled equations:

An−k = αn−kBn−k,n−k (26)

An−k−1 = αn−kBn−k−1,n−k

An−k−2 = αn−kBn−k−2,n−k + αn−k−2Bn−k−2,n−k−2

An−k−3 = αn−kBn−k−3,n−k + αn−k−2Bn−k−3,n−k−2

An−k−4 = αn−kBn−k−4,n−k + αn−k−2Bn−k−4,n−k−2 + αn−k−4Bn−k−4,n−k−4

An−k−5 = αn−kBn−k−5,n−k + αn−k−2Bn−k−5,n−k−2 + αn−k−4Bn−k−5,n−k−4

....
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where, for the sake of clarity, we have set:

Aj =

(

n

k

)

(n + 1)k
2k

(−n+ k)j(n+ 1 + k)j
(1 + k)j

(27)

Bj,n−k =
(−n+ k)j(n− k + 1)j

(1)j

Bj,n−k−2 =
(−n+ k + 2)j(n− k − 1)j

(1)j
= Bj,n−k

(n− k − j)2

(n− k + j)2

Bj,n−k−4 =
(−n+ k + 4)j(n− k − 3)j

(1)j
= Bj,n−k

(n− k − j)4

(n− k + j)4
....

Bj,n−k−2i =
(−n+ k + 2i)j(n− k − 2i+ 1)j

(1)j
= Bj,n−k

(n− k − j)2i

(n− k + j)2i
....

In the previous equation, the symbol (x)n is used to represent the falling factorial. From
equations (26) and identities (27), a recurrence relation for the coefficients αn−k−2i can
be derived. It can be shown that:

αn−k−2i =
2k+2i(n− 1/2)k(n − i)i(n− k − 1/2)2i

(2i)2i(n− 1/2)i
−

i−1
∑

l=0

(2(n − k − i− l))2(i−l)

(2(i − l))2(i−l)
αn−k−2l.

(28)

3. Conclusion

In this work, we have studied the scaling properties of Legendre polynomials Pn(x).
We have demonstrated that Pn(λx), where λ is a constant, can be expanded either
as a sum of Legendre polynomials Pn(x) or their multiple derivatives, and we have
obtained an explicit expression for the expansion coefficients. In addition, we have
shown that the multiple derivative dkPn(x)/dx

k can also be expressed as a sum of
Legendre polynomials and we derived a recurrence relation for the coefficients.
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