Production Considerations (II)

Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa

Objectives of this lecture

By the end of this lecture you will be able to:

- 1. Describe the problems associated with protein formulations
- 2. Numerate strategies to improve protein formulations
- 3. Understand the difficulty of scaling up pharmaceutical protein industry

Additives

- 1. Active ingredient
- 2. Solubility enhancer
- 3. Anti-adsorption/aggregation agent
- 4. Buffer components
- 5. Preservative/anti-oxidant
- 6. Lyoprotectant/cryoprotectant
- 7. Osmotic agents
- 8. Delivery systems

Solubility enhancer

• Problem:

 Aggregation and precipitation especially with nonglycosylated proteins

Solution:

- Proper pH and ionic strength
- Cationic amino acids (Lys and Arg)
- Surfactants (e.g. SDS)

Anti-adsorption Anti-aggregation

• Problem:

 Hydrophobic sites causes adhesion and adsorption to solid interfaces and leads to unfolding and aggregation

Solution:

- Proper pH and ionic strength
- Surfactants (e.g. phospholipids and SDS)
- Competitor protein (e.g. Albumin)

Buffer components

• Problem:

 Protein solubility and stability depend to a great extent on the pH of the surrounding environment. Temporary change in the pH can cause aggregation

• Solution:

- Add buffer components
- Citrate (pH 3-7), acetate (pH 3-7), and phosphate (pH 7-11) buffers
- Choose buffer systems that do not crystallize during freezing

Preservatives and Anti-oxidants

• Problem:

- Oxidation occurs to (Met, Cys, Trp, Tyr, and His)
- Contamination with microorganisms expecially in multiple-dosing dosage forms

• Solution:

- Replace oxygen in the vial with inert gas
- Ascorbic acid
- Preservatives at bacteriostatic concentrations (e.g. phydroxybenzoic acid and thimerosal "thiomersal")

Osmotic Agents

• Problem:

 Most proteins are given parenterally. Therefore, they must be administered as isotonic solutions. However, excipients used in this regard may influence protein structural stability

• Solution:

 Sugars (e.g. sucrose) and polyhydric alcohols i.e.
sugar alcohol e.g. glycerol and PEG improves protein stability through *preferential exclusion*

Storage

1. Aqueous solutions:

- Stability of protein solutions depends on pH, ionic strength, temperature, and stabilizers
- Smooth walled glass
- Air-tight container
- Dark

2. Freeze-dried form (Lyophilized)

3. Dried form in compact state (pills)

Freeze Drying

- Presence of water in the protein solution promotes chemical and physical degradation, which reduces the expected shelf life
- Freeze drying removes water through sublimation and not evaporation

Freeze Drying

Freeze Drying

Freeze Drying Steps

- The freeze drying process consists of three steps:
 - 1. Freezing:

Crystallization of water molecules (bound and unbound to protein/excipients)

2. Primary drying:

Removal of unbound water molecules by sublimation

3. Secondary drying

Removal of protein/excipient bound water by sublimation

In absence of proper excipients, irreversible damage to the protein

Lyoprotectant/Cryoprotectant

• PEG:

- Coats the protein
- Not a very good stabilizer

Sucrose:

- Freezes the water molecules around the protein (preferential exclusion)
- Also preservative above 60%

Lyoprotectants prevent over drying of proteins during freeze drying

You are now able to:

- Describe the problems associated with protein formulations
- Numerate strategies to improve protein formulations
- ✓ Understand the difficulty of scaling up pharmaceutical protein industry