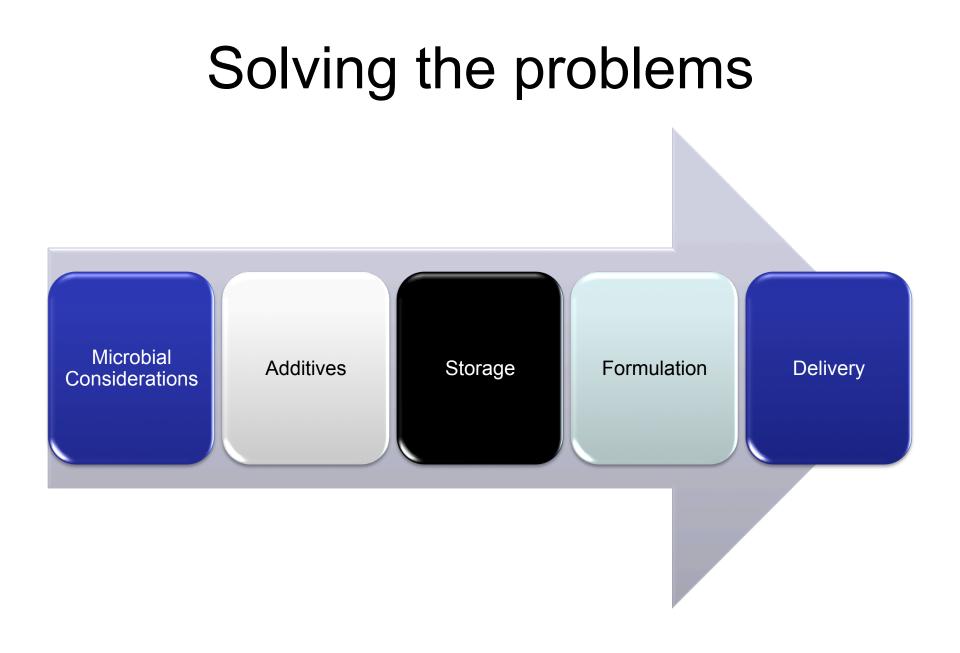
Production Considerations (I)

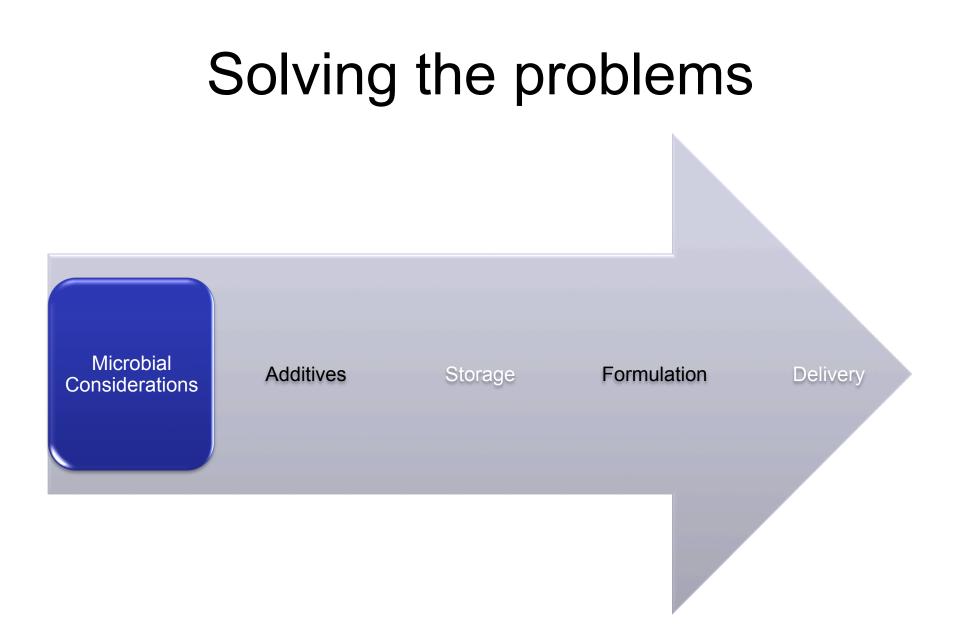
Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa

Objectives of this lecture

By the end of this lecture you will be able to:

- 1. Describe the problems associated with protein formulations
- 2. Numerate strategies to improve protein formulations
- 3. Understand the difficulty of scaling up pharmaceutical protein industry


Problems with proteins


Large molecules

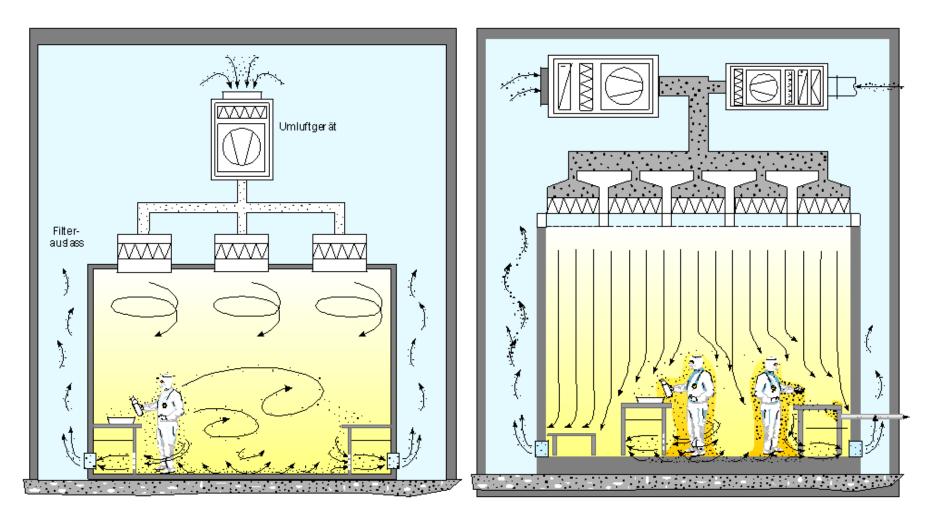
- Very hard to be synthesized chemically

• Unstable:

- Held by weak forces
- Easily destroyed in vitro and in vivo
- Hard to obtain in large quantities by extraction
 - Loss or denaturation of many proteins during the process
- Easy to contaminate
 - Most proteins are given parenterally
- Difficult to formulate for large scale purposes
 - Reproducibility is a challenge

Microbial consedirations

• Sterilization:


- It is impossible to sterilize the end product
- All equipments must be sterilized
- Assembled in aseptic conditions "BSL and Cleanroom"
- Quality control:
 - Viral testing
 - Bacterial testing
 - Pyrogen testing

- An environment of controlled level of contamination that is specified by:
 - 1. The number of particles/volume
 - 2. Particles size
- Air entering is HEPA filtered to exclude dust, airborne microbes, and aerosol particles
- Working staff must wear personal protective equipments (PPE)

Turbulent Cleanroom

Laminar Flow Cleanroom

US FED STD 209E cleanroom standards

		ISO				
Class	≥0.1 µm	≥0.2 µm	≥0.3 µm	≥0.5 µm	≥5 µm	equivalent
1	35	7.5	3	1	0.007	ISO 3
10	350	75	30	10	0.07	ISO 4
100	3,500	750	300	100	0.7	ISO 5
1,000	35,000	7,500	3000	1,000	7	ISO 6
10,000	350,000	75,000	30,000	10,000	70	ISO 7
100,000	3.5×10 ⁶	750,000	300,000	100,000	700	ISO 8

In November 2001, US FED STD 209E was cancelled

ISO 14644-1 cleanroom standards

	Maximum Particles/m ³						FED STD
Class	≥0.1 µm	≥0.2 µm	≥0.3 µm	≥0.5 µm	≥1 µm	≥5 µm	209E equivalent
ISO 1	10	2.37	1.02	0.35	0.083	0.0029	
ISO 2	100	23.7	10.2	3.5	0.83	0.029	
ISO 3	1,000	237	102	35	8.3	0.29	Class 1
ISO 4	10,000	2,370	1,020	352	83	2.9	Class 10
ISO 5	100,000	23,700	10,200	3,520	832	29	Class 100
ISO 6	1.0×10 ⁶	237,000	102,000	35,200	8,320	293	Class 1,000
ISO 7	1.0×10 ⁷	2.37×10 ⁶	1,020,000	352,000	83,200	2,930	Class 10,000
ISO 8	1.0×10 ⁸	2.37×10 ⁷	1.02×10 ⁷	3,520,000	832,000	29,300	Class 100,000
ISO 9	1.0×10 ⁹	2.37×10 ⁸	1.02×10 ⁸	35,200,000	8,320,000	293,000	Room air

Viral Decontamination

- There is no well-determined mean to detect viruses in the cell culture
- Each lab has a level of biocontaminents AKA Biosafety Level (BSL):
 - 1. **BSL1**:Well-characterized agents not know to cause disease to a healthy adult human being
 - 2. BSL2: BSL1+ agents of moderate potential hazard to personnel and environment (e.g. HBV and Salmonella)
 - **3. BSL3:** Agents which may cause serious or potentially lethal disease after inhalation but to which treatment is available (e.g. TB, Anthrax, and SARS)
 - 4. **BSL4:** High individual risk of aerosol-transmitted lab infection that cause severe or fatal diseases to which no treatment or vaccine is available (e.g. Ebola and Marburg)

Viral Decontamination

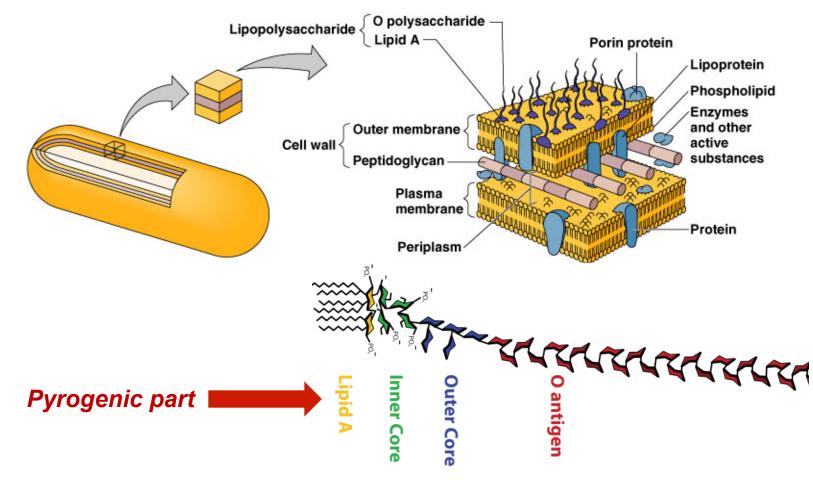
• Viral contamination can be from the host cell line or nutrients present in the growth media (e.g. FCS)

Category	Туре	Example	
	Heat	Pasteurization	
Inactivation	Radiation	UV-light	
	Dehydration	Lyophilization	
	Cross linking	Formaldehyde	
	Neutralization	Antibodies	
	Chromatography	Affinity chromatography	
Removal	Filtration	Ultrafiltration	
	Precipitation	Cryoprecipitation	

but these processes may be harmful to the product

Bacterial Decontamination

- Filtration sterilization of the final product by bacterial filter "0.22 μm membrane filter"
- Antibiotics must be added to the cell culture to inhibit bacterial contamination
 - What if the expression system is bacterial?
- Complete removal of antibiotic residues from the final product is very difficult


Pyrogens

 The process of pyrogen removal AKA depyrogenation refers to the removal of pyrogens such a <u>"endotoxins</u>" from solutions.

Property	Exotoxin	Endotoxin	
Chemistry	Secreted proteins	Shed lipopolysaccharide	
Source	Gram (+ve) or Gram (-ve) bacteria	Gram (-ve) bacteria	
Symptoms	Specific action on target tissue	Fever, diarrhea, vomiting, shock	
Toxicity	High / Fatal	Weak / Rarely fatal	
Immunogenicity	Causes neutralizing Ab production	Insufficient Ab production	
Toxoid potential	After formaldehyde treatment	None	
Fever potential	Rarely	Pyrogenic	

Pyrogens

 Lipopolysaccharide is a component of Gr (-ve) bacteria cell wall

Pyrogen Testing

Rabbit Test:

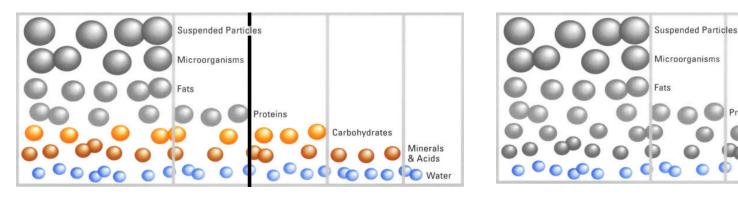
- Rabbits have similar endotoxin tolerance to humans
- Costly method and time consuming
- Inability to quantify the endotoxin level

LAL Test:

- Limulus Amebocyte Lysate (LAL) test
- FDA-approved for *in vitro* pyrogen testing
- High sensitivity 0.005 EU/mL
- Only detects LPS
- Gives false positives with Glucans

Pyrogen Removal

- Simple filtration sterilization and standard autoclaving conditions do not remove pyrogens
- Dry heat for 30 min at 250 °C would breakdown the endotoxin
- All equipments used in the production process must be endotoxin free
- The FDA's maximum permissible endotoxin limit is <u>5 EU/kg/hr</u>
- Intrathecal endotoxin limit is <u>0.2 EU/kg/hr</u>
- Sterile water for injection is allowed to contain 0.25-0.5 EU/mL


Pyrogen Removal

Ion Exchange Chromatography:

- LPS is highly negative
- Anion exchanger

Ultrafiltration and Reverse Osmosis:

LPS has high molecular weight >10kDa

Reverse Osmosis

Proteins

Carbohydrates

0

Minerals

Water

& Acids

Ultrafiltration

Pyrogen Inactivation

 Hydrolysis in order to cleave Lipid A from the polysaccharide component, Oxidation using hydrogen peroxide, and Heating at 250 °C for 30 minutes are commonly used methods inactivate endotoxin on solid surfaces. However, these methods would harm the therapeutic protein. Therefore, it is important to work with sterile endotoxin-free equipments under aseptic condition.

Cellular DNA

- Mammalian expression systems are immortalized cell lines by stable oncogene transfection
- Recombinant products may get contaminated with oncogen-bearing DNA fragments in the final product
- Purification process MUST remove cellular DNA and RNA
- DNA concentration in the final product should not exceed 10 pg/dose

Protein Contaminants

• Source:

- 1. Growth media (FBS)
- 2. Host cells
- 3. Ligands from affinity chromatography columns
- Host version of the protein can be co-purified with the protein of interest
- Large-scale production prefers the use of serum-free media (e.g. in mAbs production) but this causes insufficient growth and lower yield of production
- Foreign protein contaminants can be hazardous and immunogenic.
 If not purified, they lead to miss-interpretation of the produced protein's immunogenicity profile

You are now able to:

- Describe the problems associated with protein formulations
- Numerate strategies to improve protein formulations
- ✓ Understand the difficulty of scaling up pharmaceutical protein industry