

### Chapter 1: The Foundations: Logic and Proofs

| Section                           | Required Exercises                                      |
|-----------------------------------|---------------------------------------------------------|
| 1.1<br>Propositional Logic        | 2,3,8(a,d,g),11(a,c,e),17,28,29(a,c),31(c,e), 35(e),40. |
| 1.3<br>Propositional Equivalences | 1(a),3(a),7,9(c),10(c),11,12,14,16,19.                  |
| 1.4<br>Predicates and Quantifiers | 1,5,7,11,14,15,19.                                      |
| 1.6<br>Rules of Inference         | 1,2, and The sheet below                                |
| 1.7<br>Introduction to Proofs     | 1,3,6,9,11,15,16,17,26,31.                              |
| 1.8<br>Proof Methods and Strategy | 1,3,6,9,14,19,29,34.                                    |

#### Section 1.6

Are the following arguments valid or invalid?

|                                                                                                                                                                 |                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $  \begin{array}{c}  p \vee r \\  r \rightarrow q \\  s \vee \neg q \\  \neg s \\  \hline  \therefore p  \end{array}  $                                         | $  \begin{array}{c}  p \rightarrow q \\  \neg q \\  p \vee s \\  \hline  \therefore s  \end{array}  $                                                                         |
| $  \begin{array}{c}  (q \vee r) \rightarrow p \\  \neg p \\  s \rightarrow r \\  \hline  \therefore \neg s  \end{array}  $                                      | $  \begin{array}{c}  p \rightarrow q \\  \neg p \rightarrow r \\  r \rightarrow s \\  \hline  \therefore \neg q \rightarrow s  \end{array}  $                                 |
| $  \begin{array}{c}  \neg p \rightarrow (p \vee r) \\  \neg q \rightarrow (\neg p \wedge s) \\  s \rightarrow q \vee r \\  \hline  \therefore q  \end{array}  $ | $  \begin{array}{c}  p \rightarrow (q \rightarrow r) \\  r \rightarrow \neg u \\  \neg s \rightarrow u \\  \hline  \therefore q \rightarrow (p \rightarrow u)  \end{array}  $ |

**Chapter2:Basic Structures: Sets, Functions, Sequences, Sums and Matrices**

|                              |                                |
|------------------------------|--------------------------------|
| <b>2.1</b><br>Sets           | <b>1,2,3,5,7,8,10,19,27(a)</b> |
| <b>2.2</b><br>Set Operations | <b>4,14,25,28</b>              |

**Chapter 5:Induction and Recursion**

|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>5-1</b><br>Mathematical Induction             | <b>4-5-6-8-9-12-18-20-28-31-32-38-39-43</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>5-2</b><br>Strong Induction and Well-Ordering | <p><b>Q1:</b> Let <math>\{a_n\}</math> be a sequence of integers defined inductively as:<br/> <math>a_1 = 1, a_2 = 5, a_{n+1} = 2a_n + 3a_{n-1}</math> for all <math>n \geq 2</math>.<br/>         Prove that <math>3^n \leq a_{n+1} \leq 2(3^n)</math> for all <math>n \geq 1</math>.</p> <p><b>Q2:</b> Let <math>\{a_n\}</math> be a sequence of integers defined inductively as:<br/> <math>a_1 = a_2 = a_3 = 1, a_{n+2} = a_{n+1} + a_n + a_{n-1}</math> for all <math>n \geq 2</math>.<br/>         Prove that <math>a_n</math> is an odd number for all <math>n \geq 1</math>.</p> <p><b>Q3:</b> Let <math>\{a_n\}</math> be a sequence of integers defined inductively as:<br/> <math>a_0 = 1, a_{n+1} = a_n + 3^n</math> for all <math>n \geq 0</math>.<br/>         Prove that <math>a_n = \frac{1}{2}(3^n + 1)</math> for all <math>n \geq 0</math>.</p> |

**Chapter 9:Relations**

|                                              |                                                                           |
|----------------------------------------------|---------------------------------------------------------------------------|
| <b>9.1</b><br>Relations and their Properties | <b>1,3,6,10,11,18,26,30,32,34(a,d,e)- 36(d,e,h) ,41 ,50 ,51,52,53,56.</b> |
| <b>9.3</b><br>Representing Relations         | <b>18,22,24,26,27, 31,32.</b>                                             |
| <b>9.4</b><br>Closures and Relations         | <b>1,2,4,5,6,8,9,19,22,24,29.</b>                                         |
| <b>9.5</b><br>Equivalence Relations          | <b>1,3,9,16,21,22,23,26,28,36,40(a),42,46,48(a),55, 56(a,b).</b>          |
| <b>9.6</b><br>Partial Ordering               | <b>1,6,9,10,11,14,20,22.</b>                                              |

### Chapter10: Graphs

|                                                              |                                                                                                      |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>10-1</b><br>Graphs and Graph Models                       | <b>3,4,5,6,7,8,9,10</b>                                                                              |
| <b>10-2</b><br>Graph Terminology and Special Types of Graphs | <b>1,2,3,4,5,6,20(a,b,c,d),21, 22, 23, 24, 25, 26(a,b), 35, 36,37,38,39,40,41, 48,49,59(a,b),60.</b> |
| <b>10-3</b><br>Representing Graphs and Graph Isomorphism     | <b>34,35,36,37,38,39,50,51,53,54,55.</b>                                                             |
| <b>10-4</b><br>Connectivity                                  | <b>1,2,3,4,5,6.</b>                                                                                  |
| <b>10-7</b><br>Planar Graphs                                 | <b>1,2,3,4,5,6,7,8,9,12,13,14.</b>                                                                   |

### Chapter11Trees

|                                      |                          |
|--------------------------------------|--------------------------|
| <b>11.1</b><br>Introduction to Trees | <b>2,4,6,8,10,16,17.</b> |
| <b>11.2</b><br>Application of Trees  | <b>1,2</b>               |
| <b>11.4</b><br>Spanning Trees        | <b>2,3,4,5,6,7,8</b>     |

### Chapter12Boolean Algebra

|                                               |                                     |
|-----------------------------------------------|-------------------------------------|
| <b>12-1</b><br>Boolean Functions              | <b>1,2,3,4,5(b,d),6(c,d),11,28</b>  |
| <b>12-2</b><br>Representing Boolean Functions | <b>1(b,c,d),2(a,d),3(a,d),7(c)</b>  |
| <b>12-3</b><br>Logic Gates                    | <b>1,2,3,4,5,6</b>                  |
| <b>12-4</b><br>Minimization of Circuits       | <b>1,2,3,4(c),6(a,b),12,13 ,14.</b> |