

Name:	Student No.:				
Section No.:	Sequence No.:				
Question No.	I	II	III	IV	Total
Mark					

Question I

Choose the correct answers and write them in the following table:

Question	1	2	3	4	5	6	7	8	9	10
Answer										

- 1) The compound proposition $[p \wedge (\neg p \rightarrow q)] \rightarrow \neg p$ is
 - a tautology
 - a contradiction
 - a contingency
- 2) The proposition $(p \wedge q) \rightarrow p$ and its inverse are logically equivalent
 - true
 - false
- 3) Let $x \in \mathbb{Z}$. The two statements "If x is even, then $x^2 \geq 1$ " and "If $x^2 < 1$, then x is odd" are
 - logically equivalent
 - not logically equivalent
- 4) The argument $\{p \rightarrow q, q \rightarrow (p \rightarrow r), p \therefore r\}$ is
 - valid
 - invalid
- 5) The statement $(\exists n \in \mathbb{N})$ such that $n + 2 = 3n$ is
 - true
 - false
- 6) The statement $\{1\} \subseteq \mathcal{P}(\{1, 2\})$ is
 - true
 - false
- 7) Let $P(x, y)$ be the statement " $x = 3y + 6$ " then
 - $P(1, 6)$ is true
 - $P(9, 1)$ is true
 - $P(1, 9)$ is true
- 8) " $|x - 1| > 1$ " is a proposition
 - true
 - false
- 9) If a statement is not a tautology then it is a contradiction
 - true
 - false
- 10) The statement: $A \subseteq B \Leftrightarrow A \cup B = A$, where A and B are subsets of a certain set
 - true
 - false

Question II

a) Write the contrapositive and the converse of the following

You will win if you try hard.

1-

2-

b) Prove that $x \geq -|x|$ where x is a real number.

Question III

Let $n \in \mathbb{N}$. Prove that $5n + 6$ is even if and only if n is even.

Question IV

Using the first principle of mathematical induction to prove

$$1 + 3 + \dots + (2n - 1) = n^2 \text{ for } n \geq 1.$$

Good Luck