

College of Science. Department of Mathematics

كلية العلوم نسم الرياضيات

Second Midterm Exam Academic Year 1446 Hijri- First Semester

معلومات الامتحان Exam Information								
Course name	Discrete M	Discrete Mathematics						
Course Code	151	151 Math						
Exam Date	2024-11-06	رمز المقرر تاريخ الامتحان						
Exam Time	12: 00	وقت الامتحان						
Exam Duration	2 hours	יויט	مدة الامتحان ساعة					
Classroom No.			رقم قاعة الاختبار					
Instructor Name			اسم استاذ المقرر					

معلومات الطالب Student Information					
Student's Name		اسم الطالب			
ID number		الرقم الجامعي			
Section No.		رقم الشعبة			
Serial Number		الرقم التسلسلي			

General Instructions:

تعليمات عامة:

- Your Exam consists of 8 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- Calcolator does not allowed.

- عدد صفحات الامتحان 8 صفحة. (بإستثناء هذه الورقة)
- و يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
 - لا يسمح باستخدام الالة الحاسبة.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related	Points	Final
		Question (s)		Score
1	C.L.O 1.1	QI(18)		
		QIII(A),		
		QIV(B)		
2	C.L.O 1.2	QI(9-10)		
		QII(A)		
3	C.L.O 2.2	QII(B),		
		QIII(B)		
4	C.L.O 2.3	QIV(A)		
5				
6				
7				
8				

Questions	Q(I)	Q(I)	Q(II)	Q(II)	Q(III)	Q(III)	Q(IV)	Q(IV)	Total
	(1—8)	(9-10)	(A)	(B)	(A)	(B)	(A)	(B)	
Marks									

Question I:

Question Number	1	2	3	4	5	6	7	8	9	10
Answer										

Choose the correct answer, then fill in the table above: (5 points)

- 1- For the equivalence relation on \mathbb{Z} defined by $a \equiv b \pmod{8}$:
 - (a) [2]=[8].
 - (b) [2]=[10].
 - (c) [1]=[8].
 - (d) [2]=[-10].

- 2- If {{0}, {-1}, {1}, {2}} is a partitions of {-1, 0, 1, 2}, then the ordered pairs in the equivalence relations produced by this partitions is:
 - (a) $\{(0,0), (1,1), (-1,-1), (2,2)\}.$
 - (b) $\{(-1,1), (1,1), (0,1), (0,0), (1,-1), (1,2), (2,1), (2,2)\}.$
 - (c) $\{(-1,-1), (-1,0), (-1,1), (-1,2), (0,-1), (0,0), (0,1), (0,2), (1,-1), (1,0), (1,1), (1,2), (2,-1), (2,0), (2,1), (2,2)\}.$
 - (d) None of the previous.

3- The directed graph below represented a relation R which is:

- (a) Reflexive, symmetric, antisymmetric and not transitive.
- (b) Reflexive and transitive but not symmetric and not antisymmetric.
- (c) Reflexive and antisymmetric only.
- (d) Reflexive and symmetric but not antisymmetric and not transitive.

4- The graph K_4 is considered as:

- (a) 4-regular complete.
- (b) 3-regular not bipartite.
- (c) 3-regular bipartite.
- (d) None of the previous.

5- $\forall n > 3$, the degree sequence of vertices in $K_{3,n}$ is:

- (a) $\underbrace{n, n, n, \dots, n}_{n \text{ times}}$, 3,3,3.
- (b) n, n, n, 3, 3, 3.
- (c) $\underbrace{3,3,3,\ldots,3}_{n \text{ times}}$.
- (d) $n, n, n, \underbrace{3,3,3,\ldots,3}_{n \ times}$.

6- There exists a graph with vertices of degrees

- (a) 3, 3, 2, 1.
- (b) 6, 4, 3, 2.
- (c) 3, 2, 2, 1.
- (d) None of the previous.

7- The number of edges in the complementary graph of C_{10} is

- (a) 35.
- (b) 20.
- (c) 25.
- (d) 45.

8- In a poset $(P(A), \subseteq)$, where $A = \{0,1,2\}$, then $\{0\}$ and $\{1\}$ is

- (a) Comparable.
- (b) Incomparable.

9- If
$$M_S = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 and $M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, then $M_{S \cap R} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

$$\begin{array}{cccc}
(a) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

10- If $R = \{(x, y)|y = x^2 - 3\}$, and $S = \{(x, y)|y = 2x\}$, where R and S are defined on \mathbb{Z} , then $R \circ S$ is defined as

- (a) $\{(x,y)| y = (2x^2 3)^2\}.$
- (b) $\{(x,y)|y=2x^2-3\}.$
- (c) $\{(x,y)|y=4x^2+3\}.$
- (d) $\{(x,y)|y=4x^2-3\}.$

Question II: (3+6 = 9 points)

(A) Let $R = \{(1,2), (2,3), (4,1)\}$ be a relation on a set $\{1, 2, 3, 4\}$. Find (i) R^2 .

- (ii) R^{-1} .
- (iii) $R \circ R^{-1}$.
- (iv) $R R^{-1}$.

(B) Let R be the relation defined on the set \mathbb{Z} , such that:

$$x, y \in \mathbb{Z}$$
, $xRy \Leftrightarrow x + y \text{ is even.}$

(i) Show that R is an equivalence relation.

(ii) Find the equivalence class [2] and [5].

(iii) Is $[7] \cap [10] = \emptyset$ or not. (Justify your answer.)

Question III: (3.25+3=6.25 points)

(A) Let T be a partial ordering relation defined on the set $A = \{1, 2, 3, 4\}$ shown in the given Hasse diagram

(i) List all ordered pairs of T.

(ii) Decide whether T is totally ordering on A, or not. (justify your answer)

(B) Let S be a relation defined on the set \mathbb{N} :

$$a,b \in \mathbb{N}$$
, $a S b \Leftrightarrow \frac{a}{b}$ is an odd integer.

Show that S is a partial ordering relation on \mathbb{N} .

Question IV: (2.25+2.5=4.75 points)

(A) Answer the following questions about the following graph G:

(i) Is the graph G bipartite? Justify your answer.

(ii) Draw the complementary graph of G.

(B) For the graph below, find the following:

(i) Find deg(a), deg(c).

(ii) Find N(A), where $A = \{c, d\}$.

(iii) Does the graph have isolated vertex? Pendant vertex? If so, name them.