

College of Science. **Department of Mathematics**

First Midterm Exam Academic Year 1446 Hijri- First Semester

معلومات الامتحان Exam Information						
Course name	Discrete N	Discrete Mathematics				
Course Code	151	151 Math				
Exam Date	2024-10-02	2024-10-02 1446-03-29		تاريخ الامتحان وقت الامتحان		
Exam Time	12: 0	12: 00 PM				
Exam Duration	2 hours		ساعتان	مدة الامتحان		
Classroom No.				رقم قاعة الاختبار		
Instructor Name				اسم استاذ المقرر		

معلومات الطالب Student Information					
Student's Name		اسم الطالب			
ID number		الرقم الجامعي			
Section No.		رقم الشعبة			
Serial Number		الرقم التسلسلي			

General Instructions:

- Your Exam consists of 6 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان 6 صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكيةُ خارج قاعة الامتحان.
 - لا يسمح باستخدام الالة الحاسبة.

Calcolator does not allowed.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O 1-1	QI-QII		
2	C.L.O 2-1	QIII-QIV-QV		
3				
4				
5				
6				
7				
8				

Questions	Q(I)	Q(II)	Q(III)	Q(IV)	Q(V)	Total
Marks						

Question I: (7 points)

Question Number	1	2	3	4	5	6	7
Answer							

Choose the correct answer, then fill in the table above:

- 1- The truth value of " $\forall x \in \mathbb{R}$, if $x^2 < 0$, then $x^2 + 1 = 3$ " is:
 - (a) True.
 - (b) False.
- 2- The proposition $\neg q \leftrightarrow q$ for any proposition q is a:
 - (a) Tautology.
 - (b) Contradiction.
 - (c) Contingency.
- 3- The proposition $(q \land \mathbf{F}) \lor p$ is logically equivalent to:
 - (a) **T**

(b) **F**

- (c) p
- (d) *q*
- 4- The proposition $\neg(p \rightarrow \neg q) \rightarrow (p \land q)$ is logically equivalent to:
 - (a) **T**

(b) **F**

- (c) p
- (d) q

- 5- The negation of the statement $[\exists x \ (x^2 < x)]$ and $[\forall x \ (x^2 \neq 3)]$ is
 - (a) $\forall x(x^2 \ge x) \text{ or } \exists x (x^2 = 3),$
 - (b) $\exists x (x^2 < x) \text{ or } \forall x (x^2 = 3)$,
 - (c) $\forall x(x^2 > x) \text{ or } \exists x (x^2 = 3),$
 - (d) $\exists x(x^2 \le x) or \forall x(x^2 \ne 3)$.
- 6- The statement "x + 2 < 2", is true when the domain is the set of:
 - (a) for all positive real number,
 - (b) for all negative real number,
 - (c) for all real number,
 - (d) for all real number except x=0.
- 7- Let P(x) be the statement " $x^2 > 11$ ", and the universe of discourse consists of the positive integers not exceeding 4, then the following is equivalent to the statement $\exists x P(x)$:
 - (a) $(P(1) \lor P(2)) \land (P(3) \land P(4))$,
 - (b) $P(1) \vee P(2) \vee P(3) \vee P(4)$,
 - (c) $P(1) \wedge P(2) \wedge P(3) \wedge P(4)$,
 - (d) $(P(1) \vee P(2)) \vee (P(3) \wedge P(4))$.

Question II: (3+2.5 points)

- (A) Consider the proposition: "If 1 + 3 > -2 then 2 is even number". Find the following:
 - (1) The truth value of the proposition.
 - (2) The converse and its truth value.
 - (3) The inverse and its truth value.
 - (4) The contraposition and its truth value.
- (B) Without using the truth tables: prove that the following proposition is Tautology:

$$[\neg p \land (p \lor q)] \to q$$

Question III: (2.5+2.5 points)

(A) **By Contradiction:** prove that if x is an irrational then $\frac{1}{x}$ is irrational.

(B) Prove that for all integer n, if $n^2 + 3$ is even, then 1 - n is also even.

Question IV: (2.5+1 points)

(A) Prove that for all integers a and b, if a is even and b is odd, then $a^2 + b^2$ has the form 4j+1 for some integer j.

(B) Show that the statement: "For every positive integer n, $n^2 \ge 2n$ " is false.

Question V:(4 points)

The sequence $\{a_n\}$ is defined recursively by

$$a_1 = 1, a_2 = 4, \ a_n = 2a_{n-1} - a_{n-2}, \quad \forall \ n \ge 3$$

Use the Principle of Strong Mathematical Induction to prove that $a_n=3n-2, \ \forall \ n\geq 1.$

Good luck