

College of Science. Department of Mathematics

كلية العلوم نسم الرياضيات

Final Exam Academic Year 1446 Hijri- First Semester

	Exam Information	معلومات الامتحان				
Course name	Course name Discrete Mathematics					
Course Code	ourse Code 151 Math					
Exam Date	2024-12-23	1446-06-22	تاريخ الامتحان			
Exam Time	08: 00	AM	وقت الامتحان			
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان			
Classroom No.			رقم قاعة الاختبار			
Instructor Name			اسم استاذ المقرر			

Student Informa	tion معلومات الطالب
Student's Name	اسم الطالب
ID number	الرقم الجامعي
Section No.	رقم الشعبة
Serial Number	الرقم التسلسلي

General Instructions:

تعليمات عامة:

- Your Exam consists of 9 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- Calcolator does not allowed.

- عدد صفحات الامتحان 9 صفحة. (باستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
 - لا يسمح باستخدام الآلة الحاسبة.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O 1.1(1+(1+2)=4 marks)	QII(a(iii)), QII(b(ii-iii)		
2	C.L.O 1.2(1+4=5 marks)	QII(a(i)) QV(a)		
3	C.L.O 2.1(9+2=11 marks)	QI QIV(b)		
4	C.L.O 2.2(3+3=6 marks)	QII(a(ii)), QII(b(i))		
5	C.L.O 2.3(7+4=11 marks)	QIII QIV(a-c)		
6	C.L.O 2.4(3 marks)	QV(b)		
7 8				

EXAM COVER PAGE

(i) (ii) (iii) (i)	
(ii) (iii) (i)	
(iii) (i)	
(i)	
(::)	
(ii)	
(iii)	

Question I: (3+4+2=9 points)(a) Without using truth tables, show that $[(p \rightarrow \neg q) \land p] \rightarrow \neg q$ is a tautology.

(b)	Use	induction	to	prove	that	310	16^n	+	2)	for all	n	>	0.

(c) Let a and b be integers such that $4|(a^2 + 5b^2)$. Use a proof by contradiction to show that a is even or b is even.

Question II: ((1+3+1)+(3+1+2)=11 points)

- (a) Let $E = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}$ be a relation on $A = \{1, 2, 3, 4, 5\}$.
 - (i) Represent E with a digraph.

(ii) Show that E is an equivalence relation.

(iii) Find all distinct equivalence classes of E.

(b)	Let P t there (i)	be the relation on the set \mathbb{Z}^+ of positive integers defined by aPb if and only if exists an integer $n \ge 0$ such that $a = 2^n b$. Show that P is a partial ordering.
	(ii)	Is P a total ordering? (Justify your answer.)
	(iii)	Draw the Hasse diagram of P on the subset $\{1, 2, 3, 4, 5, 6, 7, 8\}$ of \mathbb{Z}^+ .

Question III: (1+2+(1+1+2)=7 points)

(a) Does a bipartite graph have to always be connected? (Justify your answer.)

(b) Let G be a simple graph with 15 edges such that its complement \bar{G} has 13 edges. Find the number of vertices of G. (Justify your answer.)

(c) Let J be the (undirected) graph represented with the following adjacency matrix.

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

(i) Determine whether *J* is bipartite. (Justify your answer.)

(::\	D 4b 7	-61
(ii)	Draw the complement \bar{J}	or J

(iii) Determine if
$$J$$
 is isomorphic to \bar{J} . (Justify your answer.)

Question IV: (2+(1+1)+2=6 points)

(a) Let T be a tree with degree-sequence 3, 2, 2, 2, 2, x, y, z. Find all possible solutions for the triple (x, y, z). (Justify your solutions.)

(b) For the graph H below, find a spanning tree with root r,

(i) using depth-first search;

(ii) using breadth-first search.

(c) Using alphabetical order, form a binary search tree for the words: Car, Train, Boat, Aeroplane, Bus, Helicopter, Bicycle.

Question V: ((2+2)+(1+2)=7 points)

- (a) For the Boolean function $f(x, y, z) = x + \bar{y}z$, find (i) the complete sum-of-products expansion (CSP);

(ii) the complete product-of-sums expansion (CPS).

- (b) Let $g(x, y, z) = xyz + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z$ be a Boolean function. (i) Build the Karnaugh map of g.

Simplify g (i.e., write it in MSP form). (ii)