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Question I: (3+4+2=9 points)
(a) Without using truth tables, show that [(p = =g) A p] = =g is a tautology.



(b) Use induction to prove that 3|(16" + 2) foralln = 0.

(¢) Let a and b be integers such that 4|(a® + 5b?). Use a proof by contradiction to show that
a is even or b is even.



Question II: ((1+3+1)+(3+1+2)=11 points)
{a) Let
E ={(1,1),(1,3),(1,5),(2,2), (2,4), (31),(3,3), (3,5), (4.2), (4.4), (5,1), (53),(5,5)}

be a relationon A = {1,2,3,4,5}.
(1) Represent E with a digraph.

(i) Show that E is an equivalence relation,

(iii)  Find all distinct equivalence classes of E.



(b) Let P be the relation on the set Z* of positive integers defined by aPb if and only if
there exists an integer n = 0 such that a = 2"b.

(1) Show that P is a partial ordering.

(i) Is P atotal ordering? (Justify your answer.)

(iii)  Draw the Hasse diagram of P on the subset {1,2,3,4,5,6,7, 8} of Z*.



Question III: (1+2+(1+1+2)=7 points)
(a) Does a bipartite graph have to always be connected? (Justify your answer.)

(b) Let G be a simple graph with 15 edges such that its complement G has 13 edges. Find the
number of vertices of G. (Justify your answer.)

(c) Let J be the (undirected) graph represented with the following adjacency matrix.

0 1 0 0 1
10010
M=0 0 0 1 1
0 11 0 0
1 01 0 0

(i) Determine whether / is bipartite. (Justify your answer.)



(ii) Draw the complement J of J.

(iii)  Determine if ] is isomorphic to J. (Justify your answer.)

Question IV: (2+(1+1)+2=6 points)

(a) Let T be a tree with degree-sequence 3,2, 2, 2, 2, x, v, z. Find all possible solutions for the
triple (x, v, 2). (Justify your solutions.)



(b) For the graph H below, find a spanning tree with root r,
w r 5

H
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(i) using depth-first search;

(1) using breadth-first search.

(c) Using alphabetical order, form a binary search tree for the words:
Car, Train, Boat, Aeroplane, Bus, Helicopter, Bicycle.



Question V: ((2+2)+(142)= 7 points)

(a) For the Boolean function f(x,y,z) = x + ¥z, find
(i) the complete sum-of-products expansion (CSP);

(i1) the complete product-of-sums expansion (CPS).



(b) Let g(x,y,2) = xyz + xyZ + XyZ + X¥Z + Xyz be a Boolean function.
(i) Build the Karnaugh map of g.

(i1) Simplify g (i.e., write it in MSP form).

Good Luck



