Bronsted-Lowry Acids

$$HA + H_2O \iff H_3O^+ + A^-$$

- An acid is a substance that can donate a proton
- A base is a substance that can accept a proton
- In the above equation, HA is the acid and H₂O is the base
- A⁻ is the conjugate base of HA, and H_3O^+ is the conjugate acid of H_2O . $CH_3COOH \longleftrightarrow H^+ + CH_3COO^-$ Acid Conjugate base

Proton Hydration

- Protons do not exist free in solution.
- They are immediately hydrated to form hydronium ions (H₃O⁺). $K_{eq} = \frac{[H^+][OH^-]}{[H_2O]}$
- A hydronium ion is a water molecule with a proton associated with one of the nonbonding electron pairs.
- Hydronium ions are solvated by nearby water molecules.

What Is pH?

$$pH = -log[H^+]$$

- $K_w = [H^+][OH^-] = 1 \cdot 10^{-14} M^2$
- $-\log[H^+] \log[OH^-] = +14$

pH+pOH=14

- pH is defined as the negative logarithm of the hydrogen ion concentration.
- Simplifies equations
- The pH and pOH must always add up to 14.
- In neutral solution, [H⁺] =
 [OH⁻] and the pH is 7.

[H ⁺] (M)	pН	[OH ⁻] (M)	pOH ^a
$10^{0}(1)$	0	10-14	14
10-1	1	10-13	13
10-2	2	10 ⁻¹²	12
10-3	3	10-11	11
10-4	4	10-10	10
10-5	5	10-9	9
10-6	6	10-8	8
10-7	7	10-7	7
10-8	8	10-6	6
10-9	9	10-5	5
10-10	10	10-4	4
10-11	11	10-3	3
10-12	12	10-2	2
10-13	13	10-1	1
10-14	14	$10^{0}(1)$	0

Buffers

Buffer

- It is a chemical system that tends to resist large changes in pH upon the addition of small amounts of H⁺ or OH⁻ ions.
- Common buffer mixtures contain two substances, a conjugate acid and a conjugate base.

- Buffers are mixtures of weak acids and their conjugate base
- Each acid has a conjugate base
- For example B⁻ is the conjugate base of the acid HB

 $\begin{aligned} \mathrm{NH}_{4}^{+} + & \mathrm{H}_{2}\mathrm{O} & \Longrightarrow & \mathrm{H}_{3}\mathrm{O}^{+} + & \mathrm{NH}_{3} \\ \mathrm{HSO}_{4}^{+} + & \mathrm{H}_{2}\mathrm{O} & \longrightarrow & \mathrm{H}_{3}\mathrm{O}^{+} + & \mathrm{SO}_{4}^{-} \\ \mathrm{HCl} + & \mathrm{H}_{2}\mathrm{O} & \longrightarrow & \mathrm{H}_{3}\mathrm{O}^{+} + & \mathrm{Cl}^{-} \\ \mathrm{HBr} + & \mathrm{H}_{2}\mathrm{O} & \longrightarrow & \mathrm{H}_{3}\mathrm{O}^{+} + & \mathrm{Br}^{-} \end{aligned}$

$H_2O + H_2O = H_3O^+ + OH^-$

- Weak acids dissociate weakly because they have strong conjugate base that bind hydrogen.
- Strong acids ionize easily to give H⁻ because they have weak conjugate base
- Acids are proton donors
- Bases are proton acceptors

- At pH = pKa, there is a 50:50 mixture of acid and anion forms of the compound.
- **Buffering capacity** is lost when the pH differs from pKa by more than 1 pH unit.
- Buffering capacity of acid/anion system is greatest at pH = pKa.

Types of buffer

Acidic buffer

Basic buffer

contains a weak acid and a salt of the weak acid (conjugate base). acid).

contains a weak base and a salt of the weak base (conjugate

- Together the two species (conjugate acid plus conjugate base)
- Resist large changes in pH by partially absorbing additions of [H⁺] or [OH⁻] ions to the system.

- If H⁺ ions are added to the buffered solution, they react partially with the conjugate base present to form the conjugate acid. Thus some H⁺ ions are taken out of circulation.
- If OH⁻ ions are added to the buffered solution, they react partially with the conjugate acid present to form water and the conjugate base. Thus, some OH⁻ are taken out of circulation.

Example of acidic buffer

- (CH_3COOH/CH_3COO^-)
- (H_2CO_3/HCO_3^-)

Example

How can this acidic buffer (H_2CO_3/HCO_3) resist change in pH.

• The buffer working range is determined by the pKa of the conjugate acid.

• The best buffering region is one pH unit on either side of the pKa value

 $pH = pKa \pm 1$

Titration curve

- It is a plot of pH against the amount of NaOH added.
- A measured volume of the acid is titrated with a base solution, usually sodium hydroxide (NaOH) of known concentration.
- The NaOH is added in small increments until the acid is consumed (neutralized).

Example:

Titration curve of acetic acid

 $CH_3COOH \Longrightarrow H^+ + CH_3COO^-$

Henderson–Hasselbalch Equation

Biological Buffer Systems

- Maintenance of intracellular pH is vital to all cells.
 - Enzyme-catalyzed reactions have optimal pH.
 - Solubility of polar molecules depends on H-bond donors and acceptors.
 - Equilibrium between CO₂ gas and dissolved HCO₃⁻ depends on pH.
- Buffer systems *in vivo* are mainly based on:
 - phosphate, concentration in millimolar range
 - bicarbonate, important for blood plasma
 - histidine, efficient buffer at neutral pH