بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي ١٤٤١ هـ الاختبار الفصلي

	الرقم الجامعي:		اسم الطالب:
كشف الحضور:	الرقم التسلسلي في ا		أستاذ المقرر:
	من 30	الدرجة:	

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
В	A	C	В	A	D	В	C	D	C	A	D	A	C	D

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
В	C	D	C	В	A	C	В	C	D	В	A	В	C	D

السوال الأول

شركة تصنيع سيارات تريد تحديد كمية الإنتاج الشهري لثلاثة موديلات مختلفة الأحجام من سيارات النقل: صغيرة ، متوسطة ، كبيرة. الجدول التالي يبين متطلبات الإنتاج من الحديد ومن ساعات الإنتاج ، ويبين أيضا تكلفة التصنيع وسعر البيع لكل سيارة:

سعر البيع	تكلفة التصنيع	عدد الساعات اللازمة	كمية أطنان الحديد اللازمة	
(ريال/سيارة)	(ريال/سيارة)	لإنتاج سيارة واحدة	لإنتاج سيارة واحدة	
20000	10000	110	1	سيارة نقل صغيرة الحجم
30000	15000	130	2	سيارة نقل متوسطة الحجم
40000	20000	150	3	سيارة نقل كبيرة الحجم

يتوفر لدى الشركة شهرياً 10000 طن حديد و 50000 ساعة إنتاج. الشركة ترغب في:

- أن تكون نسبة إنتاج سيارات النقل كبيرة الحجم لا تتجاوز 20% من إجمالي السيارات المنتجة من كافة الأحجام.
 - أن لا يزيد عدد السيارات المنتجة متوسطة الحجم عن عدد السيارات المنتجة صغيرة الحجم بأكثر من 50 سيارة.
 - أن يكون عدد السيارات المنتجة متوسطة الحجم على الأقل مثل عدد السيارات المنتجة كبيرة الحجم.

عند صياغة المسألة بنموذج رياضي خطي ، أجب عن ما يلي:

1. متغيرات القرار: (الكمية المنتجة هي للشهر الواحد)

В	كمية الحديد اللازمة لتصنيع السيارات $x_1 = x_2$ عدد الساعات اللازمة لتصنيع السيارات x_2	A	$\chi_1=\chi_1=\chi_1=\chi_2=\chi_2=\chi_2=\chi_2=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3=\chi_3$
D	عدد السيارات المنتجة صغيرة الحجم $x_1=x_2=x_2=x_3$ عدد السيارات المنتجة متوسطة الحجم $x_3=x_3=x_3$	C	عدد السيار ات المصنعة من كافة الأحجام $\chi_1=\chi_2=\chi_2=\chi_3$ كمية الحديد اللازمة لإنتاج كافة السيار ات $\chi_3=\chi_3=\chi_3=\chi_3$

2. دالة الهدف:

$$\mathbf{A} \mid \max \ z = 20000x_1 + 30000x_2 + 40000x_3$$

$$\mathbf{B} \mid \min \ z = 10000x_1 + 15000x_2 + 20000x_3$$

$$\mathbf{D} \mid \max \ z = 30000x_1 + 45000x_2 + 60000x_3$$

3. من ضمن القيود الخطية:

$$\mathbf{B} \quad 110x_1 + 130x_2 + 150x_3 \ge 50000$$

$$|\mathbf{A}| \qquad x_1 + 2x_2 + 3x_3 \le 10000$$

$$\mathbf{D} \quad 111x_1 + 132x_2 + 153x_3 \le 60000$$

$$C \qquad x_1 + 2x_2 + 3x_3 \ge 10000$$

4. من ضمن القيود الخطية:

$$\mathbf{B} \qquad x_3 \ge 0.20(x_1 + x_2 + x_3)$$

$$\mathbf{A} \qquad x_3 = 0.20(x_1 + x_2 + x_3)$$

$$\mathbf{C} \qquad 0.20x_3 \le x_1 + x_2 + x_3$$

5. من ضمن القيود الخطية:

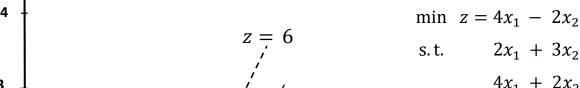
$$\mathbf{B} \qquad \qquad x_2 \ge x_1 + 50$$

$$\mathbf{D} \qquad \qquad x_1 = x_2 + 50$$

$$\mathbf{C} \qquad \qquad x_1 \le x_2 + 50$$

6. من ضمن القبود الخطية:

$$\mathbf{B} \qquad \qquad x_2 \le x_3$$

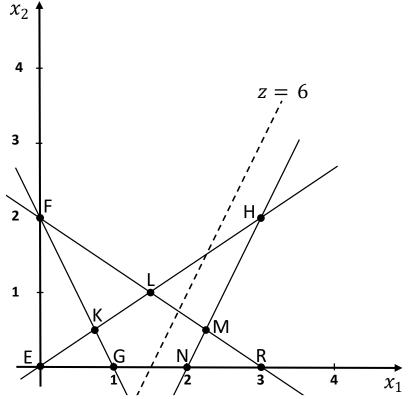

$$\mathbf{A} \qquad \qquad x_2 = x_3$$

$$\mathbf{D} \qquad \qquad x_2 \ge 2x_3$$

$$C$$
 $x_2 \ge x_3$

السوال الثاني

ليكن لدينا البرنامج الخطي التالي:



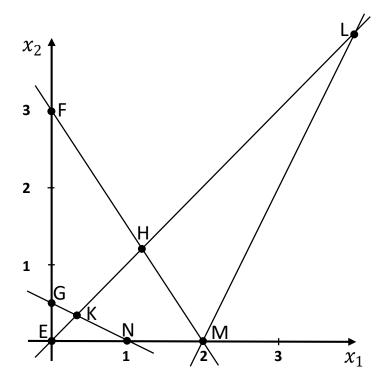
$$4x_1 + 2x_2 \ge 4$$
$$4x_1 - 2x_2 \le 8$$

 $2x_1 + 3x_2 \le 6$

$$-2x_1 + 3x_2 \le 0$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$

7. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:


D	GKLMN	C	NMR	В	FLK	A	LHM
---	-------	---	-----	---	-----	---	-----

8. الحل الأمثل للبرنامج الخطي هو عند النقطة:

9. القيمة المثلى لدالة الهدف هي:

: فإنه ، max $z=4x_1-2x_2$ فإنه ، max و يغيرت دالة الهدف لتصبح

السؤال الثالث

ليكن لدينا البرنامج الخطي التالي:

$$\max z = -2x_1 + x_2$$

s.t.
$$3x_1 + 2x_2 \le 6$$

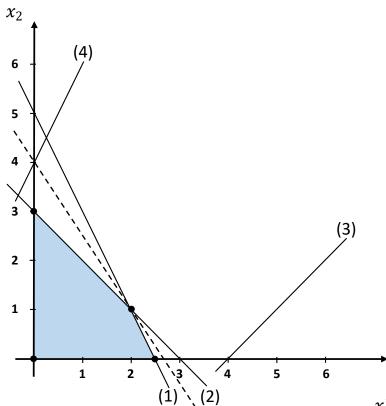
$$2x_1 + 4x_2 \ge 2$$

$$4x_1 - 2x_2 \le 8$$

$$2x_1 - 2x_2 \ge 0$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$

11. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:


D	HLM	C	GFHK	В	EKN	A	KHMN
---	-----	---	------	---	-----	---	------

12. الحل الأمثل للبرنامج الخطي هو عند النقطة:

\mathbf{D}	М	C	Н	В	К	A	F
--------------	---	---	---	---	---	---	---

13. القيمة المثلى لدالة الهدف هي:

السؤال الرابع

ليكن لدينا البرنامج الخطي التالي:

$$\max z = 3x_1 + 2x_2$$

s.t.

$$4x_1 + 2x_2 \le 10$$
 :(1) القيد

$$2x_1 + 2x_2 \le 6 \qquad :(2)$$
 القيد

$$3x_1 - 3x_2 \le 12 \qquad :(3)$$

$$-4x_1 + 2x_2 \le 8 \qquad :(4)$$
القيد (4)

$$x_1 \ge 0$$
 , $x_2 \ge 0$

 $x_1^*=2$, $x_2^*=1$, $z^*=8$: الحل الأمثل هو

14. الموارد المتوفرة هي موارد القيدين:

الثاني والرابع

الثالث والرابع

15. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (1) هي:

C 6

B 2

A 3

16. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (1) هو:

C 0.25

B 0.33

A 0.66

17. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (2) هي:

C 3.5

B 4

A 3

18. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (2) هو:

D 0.33

C 0.25

В

0.5

A

0

19. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:

D 0

C 2

В

A

14

20. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (3) هو:

0

D 0.5

C 0.75

В

A

0.25

21. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هي:

D $2 \le c_1 \le 4$

 $\mathbf{C} \qquad \frac{1}{2} \le c_1 \le 1$

 $\mathbf{B} \qquad 1 \le c_1 \le 2$

 $\mathbf{A} \qquad 4 \le c_1 \le 2$

22. فترة الحساسية لمعامل المتغير χ_2 في دالة الهدف هي:

 $\mathbf{D} \qquad \frac{2}{3} \le c_2 \le 3$

 $\mathbf{B} \qquad \frac{1}{6} \le c_2 \le \frac{1}{3}$

 $\mathbf{A} \qquad 3 \le c_2 \le 6$

السوال الخامس

max $z = 2x_1 - 2x_2 + 3x_3$ s.t. $2x_1 + 2x_2 + 2x_3 \le 6$ $x_1 + x_2 + 2x_3 \le 4$

 x_1 , x_2 , $x_3 \ge 0$

ليكن لدينا البرنامج الخطي التالي:

23. في الشكل القياسي لهذا البرنامج ، إذا كانت المتغيرات الأساسية هي (x_3, s_2) ، فإن الحل الأساسي هو:

 $\mathbf{D} = \begin{pmatrix} (x_1, x_2, x_3, s_1, s_2) \\ = (2, 2, 0, -2, 0) \end{pmatrix}$

 $\mathbf{C} = (x_1, x_2, x_3, s_1, s_2) \\ = (1, 1, 1, 0, 0)$

 $\mathbf{B} = (x_1, x_2, x_3, s_1, s_2) \\ = (0,0,3,0,-2)$

 $\mathbf{A} = (x_1, x_2, x_3, s_1, s_2) \\ = (0,0,0,6,4)$

السوال السادس

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

BV	x_1	x_2	x_3	S_1	s_2	RHS
Z	0	0.5	- 1.5	1.5	0	6
x_1	1	0.5	0.5		0	2
s_2	0	0.5	0.5	- 0.5	1	1

بعد معرفة المتغير الغير أساسي الداخل والمتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول السمبلكس التالى:

BV	x_1	x_2	x_3	S_1	s_2	RHS
Z		Е			F	G
		Н			K	L

2. القيمة التي في موقع الحرف E هي:	هی:	E	ِف	الحر	موقع	في	التي	القيمة	.2
------------------------------------	-----	---	----	------	------	----	------	--------	----

D	ليس من الإجابات السابقة	C	2	В	1		0	
					ِف F ه <i>ي</i> :	موقع الحر	القيمة التي في ه	.25
D	ليس من الإجابات السابقة	C	1.5	В	0	A	3	
					ِف G هي:	موقع الحر	القيمة التي في ه	.26
D	ليس من الإجابات السابقة	C	12	В	9	A	7.5	
					ِف H هي:	وقع الحر	القيمة التي في ه	.27
Ъ	المستعدد الإحارات السابقة	C	0	D	2		1	

28. القيمة التي في موقع الحرف K هي:

D	ليس من الإجابات السابقة	C	0	В	- 0.5	A	-2
---	-------------------------	---	---	---	-------	---	----

29. القيمة التي في موقع الحرف L هي:

\mathbf{D}	ليس من الإجابات السابقة	C	1	В	1.5	A	4
--------------	-------------------------	---	---	---	-----	---	---

30. جدول السمبلكس بعد التحديث أعلاه يبين لنا أنه:

D	الحل الأمثل غير	C	لا يوجد حل ممكن	В	يوجد حلول مثلي	A	يوجد حل أمثل وحيد
	محدود				متعددة		