بسم الله الرحمن الرحيم

المقرر: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي الأول للعام الدراسي ٣٩/١٤٣٨ هـ الاختبار النهائي

م الطالب:	الرقم الجامعي:
ىتاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D	A	В	A	C	D	C	В	D	В	C	A	C	В	D

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
В	C	В	A	C	A	D	C	В	C	A	В	D	A	В

40	39	38	37	36	35	34	33	32	31
В	C	A	C	В	C	A	A	В	A

السوال الأول:

					Supply الإمداد	لدينا جدول النقل التالي:
	1	3	1	2	35	
	4	4	2	3	40	
	2	2	3	5	30	
Demand الطلب	40	15	20	30	I	

1. الحل الأساسي الممكن المبدئي باستخدام طريقة الركن الشمالي الغربي هو:

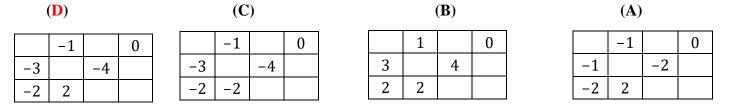
	В				الإمداد		A				الإمداد
	35	3	1	2	35		35 1	3	1	2	35
	5	15 4	20	3	40		4	15 4	20	5	40
	2	2	3	30	30		5	2	3	25	30
الطلب	40	15	20	30		الطلب	40	15	20	30	!
	D				الإمداد		C				الإمداد
	35 1	3	1	2	35		35 1	3	1	2	35
	5	15 4	20 2	3	40		5	15 4	15 2	5	40
	2	2	0 3	30	30		2	2	5	25	30
الطلب	40	15	20	30	-	الطلب	40	15	20	30	•

السوال الثاني: في جدول النقل التالي (تصغير دالة الهدف)، لدينا الحل الأساسي الممكن المعطى كما يلي:

	v_1	=	v_2	=	v_3	=	v_4	= _	الإمداد
$u_1 = 0$		2		4		2		3	30
$u_1 - 0$	20				10				30
· –		4		2		5		2	20
$u_2 =$			25		'		5		30
		5		2		3		4	40
$u_3 =$					25		15		40
الطلب	2	0	25	5	35		20)	

2. أحد القيود الخطية للبرنامج الخطى لمسألة النقل هذه هو:

3. أحد القيود الخطية للبرنامج الخطى لمسألة النقل هذه هو:


4. تكلفة الحل الأساسى الممكن الحالى هى:

5. عند اختبار أمثلية الحل الأساسى الممكن الحالي، ستكون قيم u_1, u_2, u_3 هي:

6. عند اختبار أمثلية الحل الأساسى الممكن الحالي، ستكون قيم v_1, v_2, v_3, v_4 هي:

$$\mathbf{D} \begin{bmatrix} (v_1, v_2, v_3, v_4) = \\ (2, 1, 2, 1) \end{bmatrix} \quad \mathbf{C} \begin{bmatrix} (v_1, v_2, v_3, v_4) = \\ (2, 4, 2, 3) \end{bmatrix} \quad \mathbf{B} \begin{bmatrix} (v_1, v_2, v_3, v_4) = \\ (2, 3, 2, 3) \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} (v_1, v_2, v_3, v_4) = \\ (2, 2, 2, 3) \end{bmatrix}$$

7. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم δ_{ii} هي:

8. بعد اختبار الأمثلية ومعرفة حلقة التحوير وإجراء التحوير، فإن الحل الأساسى الممكن الجديد هو:

((D)					(C	2)					(B)			(A)		
20		10]	20			10		20		10		20		10	
		25	5			25		5			10		20		25	5	
	25						35	5			15	25				20	20
		1		J					_								<u> </u>

السؤال الثالث: في جدول النقل التالي (تصغير دالة الهدف)، لدينا الحل الأساسي الممكن المعطى كما يلي:

	v_1	=	v_2	=	v_3	=	v_4	=	الإمداد
·· - 0		2		1		3		2	40
$u_1 = 0$	5		35						40
		3		3		2		1	25
$u_2 =$			10		25				35
		2		1		5		2	5 0
$u_3 =$	20						30		50
الطلب	2	5	45	5	25)	30)	

9. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم u_1, u_2, u_3 هي:

$$\mathbf{D} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 1, 0) \end{array}$$

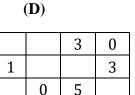
$$\begin{array}{c|c}
\mathbf{C} & (u_1, u_2, u_3) = \\
\hline
(0, 2, 0)
\end{array}$$

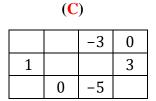
$$\mathbf{B} \qquad (u_1, u_2, u_3) = \\ (0, -2, 0)$$

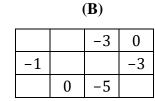
$$\mathbf{A} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 3, 2) \end{array}$$

10. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم ٧٤, ٧٤, ٧٤ هي:

$$\mathbf{D} \begin{array}{|c|} \hline (v_1, v_2, v_3, v_4) = \\ (2, 1, 0, 2) \end{array}$$


$$\mathbf{C} \begin{array}{|c|} \hline (v_1, v_2, v_3, v_4) = \\ \hline (2, 2, 1, 2) \\ \hline \end{array}$$


$$\mathbf{B} \left[\begin{array}{c} (v_1, v_2, v_3, v_4) = \\ (2, 1, 4, 2) \end{array} \right]$$


$$\mathbf{A} \left[\begin{array}{c} (v_1, v_2, v_3, v_4) = \\ (2, 1, 3, 2) \end{array} \right]$$

(A)

11. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم δ_{ij} هي:

		-3	0
0			-1
·	0	-5	

12. بعد معرفة حلقة التحوير وإجراء التحوير، فإن الحل الأساسي الممكن الجديد هو:

(D)										
5	35									
	10		25							
20		25	5							

(C)										
5	10	25								
	35									
20			30							

	(1	B)	
25	15		
	30	5	
		20	30

	(A)	
	40		
	5	25	5
25			25

13. قيمة دالة الهدف عند الحل الأساسي الممكن الجديد هي:

D 195 C 200 B 210 A 220	0
-------------------------	---

14. الحل الأساسي الممكن الجديد يعتبر حل:

السؤال الرابع:

لدينا الجدول التالي في إحدى مراحل حل مسألة التخصيص (تمت تغطية الخلايا الصفرية بأقل عدد من الخطوط):

¢)	()	2	0	15	15	
1	0	,	9	()	5	20	
5	;	()	7.0	<u>.</u> .	10	10	
¢)	2	0	,	•	10	35	
 -6		-2	0	_()	5	0	_

15. سنكمل الحل ونحصل على الجدول التالي:

(D)

		(-)		
0	0	20	10	10
10	5	0	0	15
5	0	5	5	5
0	20	5	5	30
5	25	5	5	0

(C)

0	0	20	10	10
10	5	0	0	15
5	0	5	5	5
0	20	5	5	30
0	20	0	5	0

(B)

0	0	20	10	10
10	5	0	0	15
5	0	5	5	5
0	20	5	5	30
5	20	5	5	0

(A)

0	0	20	10	10
10	5	0	0	15
5	0	5	5	5
0	20	5	5	30
0	25	0	5	0

16. في الجدول الذي اخترته في الفقرة السابقة، أقل عدد من الخطوط لتغطية القيم الصفرية هو:

D	3
---	---

B 4	
------------	--

A 2

17. وبالتالى فإنه:

نتوقف، لدينا أكثر من حل أمثا
حل امثل

В	نتوقف، لدينا حل أمثل
D	وحيد

	لا نتوقف، نكمل
A	الخوارزمية

السؤال الخامس:

لدينا مسألة التخصيص التالية لخمسة موظفين إلى خمس مهام ، بعد حل المسألة سنصل إلى الجدول النهائي الأمثل التالي:

الجدول النهائي بعد الوصول للحل الأمثل

	المهمة- 1	المهمة-2	المهمة-3	المهمة-4	المهمة-5
الموظف-1	0	0	15	5	5
الموظف-2	15	0	0	15	5
الموظف-3	5	0	20	0	15
الموظف-4	0	0	10	10	0
الموظف-5	5	10	0	0	5

مسألة التخصيص

	المهمة-1	المهمة-2	المهمة-3	المهمة-4	المهمة-5
الموظف-1	15	20	25	20	20
الموظف-2	30	20	10	30	20
الموظف-3	20	20	30	15	30
الموظف-4	20	25	25	30	20
الموظف-5	30	40	20	25	30

18. سيتم تخصيص الموظف الأول لأداء

D	المهمة الأولى	C	المهمة الرابعة	В	المهمة الثانية	A	المهمة الخامسة
---	---------------	---	----------------	---	----------------	---	----------------

لأداء	ال الع	المه ظف	تخصيص	سينتم	10
7122	الرابح	الموصف	حصيص	سيح	.17

المهمة الرابعة A المهمة الخامسة B المهمة الأولى C

20. تكلفة التخصيص الأمثل تساوى

D 80 **C** 85 **B** 95 **A** 90

السؤال السادس:

لدينا الجدول التالي لتخصيص أربعة موظفين إلى أربع مهام:

	المهمة-1	المهمة-2	المهمة-3	المهمة-4
الموظف-1	10	9	11	10
الموظف-2	9	12	10	13
الموظف-3	8	11	15	14
الموظف-4	12	15	10	12

21. أحد القيود الخطية للبرنامج الخطي لمسألة التخصيص هذه هو:

22. أحد القيود الخطية للبرنامج الخطي لمسألة التخصيص هذه هو:

$$\mathbf{D} \begin{bmatrix} x_{12} + x_{22} + x_{32} + x_{42} \le 4 \end{bmatrix} \quad \mathbf{C} \begin{bmatrix} x_{12} + x_{22} + x_{32} + x_{42} = 4 \end{bmatrix} \quad \mathbf{B} \begin{bmatrix} x_{13} + x_{23} + x_{33} + x_{43} = 1 \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} x_{11} + x_{22} + x_{33} + x_{44} = 1 \end{bmatrix}$$

23. بعد حل المسألة وإيجاد الحل الأمثل، سيتم تخصيص الموظف الثاني لأداء

المهمة الأولى A المهمة الثانية B المهمة الثانية

24. بعد حل المسألة وإيجاد الحل الأمثل ، سيتم تخصيص الموظف الرابع لأداء

المهمة الأولى A المهمة الثانية B المهمة الثانية م

25. تكلفة التخصيص الأمثل تساوي:

 D
 41
 C
 40
 B
 38
 A
 39

السؤال السابع:

في إحدى مسائل اتخاذ القرار الأمثل، لدينا جدول الأرباح التالي:

	حالات الطبيعة						
البدائل	S_1	S_2	S_3	S_4			
A_1	9	15	13	15			
A_2	10	12	16	13			
A_3	11	9	-2	17			

26. يعتبر هذا القرار من نوع:

القرار الأمثل وفقا لمعيار:

27. لابلاس:

28. التشاؤم:

29. التفاؤل:

31. سافيج:

C

$$A_3$$
 B
 A_2
 A
 A_1
 : 27

 C
 A_3
 B
 A_2
 A
 A_1
 : 28

 C
 A_3
 B
 A_2
 A
 A_1
 : $x = 0.7$
 : $x = 0.7$

 C
 A_3
 B
 A_2
 A
 A_1
 : $x = 0.7$
 :

$$P(S_1) = 0.1$$
 , $P(S_2) = 0.25$, $P(S_3) = 0.25$, $P(S_4) = 0.4$: الآن افترض أن

32. عندئذ يعتبر هذا القرار من نوع:

القداد الأمثل مققل امعداد

القرار	ر الأمنل وقف تمعيار:						
.33	القيمة المتوقعة للعوائد:	A_1	A	A_2	В	A_3	c
.34	القيمة المتوقعة لخسارة الفرص:	A_1	A	A_2	В	A_3	C
.35	حالة الطبيعة الأكثر وقوعاً:	<i>A</i> ₁	A		В		C

السؤال الثامن:

في إحدى مسائل اتخاذ القرار الأمثل، لدينا جدول التكاليف التالي:

	حالات الطبيعة						
البدائل	S_1	S_2	S_3	S_4			
A_1	30	15	20	15			
A_2	20	25	25	15			
A_3	20	10	40	20			

القرار الأمثل وفقا لمعيار:

C

$$A_3$$
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .36

 C
 A_3
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .37

 C
 A_3
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .38

 $P(S_1)=0.35$, $P(S_2)=0.25$, $P(S_3)=0.05$, $P(S_4)=0.35$: القرار الأمثل وفقا لمعيار:

C	A_3	В	A_2	<u>A</u>	A_1	القيمة المتوقعة لخسارة الفرص:	.39
c	A_3	В	A_2	A	A_1	حالة الطبيعة الأكثر وقوعاً:	.40