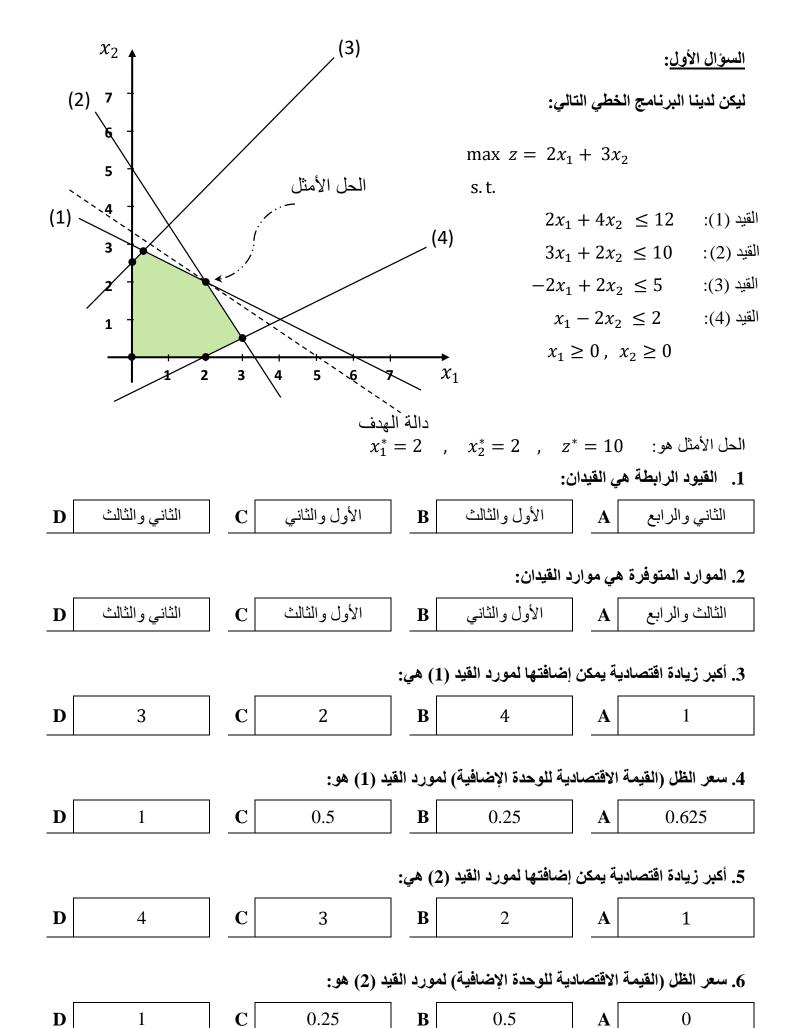
بسم الله الرحمن الرحيم


المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي الأول للعام الدراسي ٣٧ ٤ ٣٨/١٤ هـ الاختبار الفصلي الثاني

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

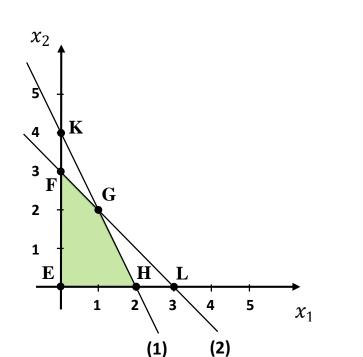
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D	C	A	В	D	В	C	D	A	C	D	A	В	A	C

25	24	23	22	21	20	19	18	17	16
В	A	D	C	D	В	C	A	C	В

7. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (3) هو:

D 4 **C** 2 **B** 3 **A** 5

8. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:


D 4 C 2 B 3 A 5

9. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هي:

D $1.5 \le c_1 \le 3$ **C** $1.5 \le c_1 \le 4.5$ **B** $1 \le c_1 \le 3$ **A** $0.5 \le c_1 \le 1.5$

10. فترة الحساسية لمعامل المتغير x_2 في دالة الهدف هي:

D $\frac{3}{4} \le c_2 \le 4$ **C** $\frac{1}{3} \le c_2 \le 1$ **B** $\frac{4}{3} \le c_2 \le 4$ **A** $1 \le c_2 \le 3$

السوال الثاني:

ليكن لدينا البرنامج الخطي التالي:

$$\max z = 3x_1 + 2x_2$$

s.t.
$$4x_1 + 2x_2 \le 8$$
 :(1)

$$3x_1 + 3x_2 \le 9$$
 القيد (2) القيد

$$x_1 \ge 0$$
 , $x_2 \ge 0$

11. القيود الخطية في الصيغة القياسية لهذا البرنامج الخطى هي:

$$\begin{array}{c|c}
\mathbf{D} & 4x_1 + 2x_2 + s_1 = 8 \\
3x_1 + 3x_2 + s_2 = 9 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
\mathbf{C} & 4x_1 + 2x_2 + s_1 \le 8 \\
3x_1 + 3x_2 + s_2 \le 9 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\mathbf{B} \begin{vmatrix} 4x_1 + 2x_2 + s_1 = 8 \\ 3x_1 + 3x_2 + s_2 = 9 \\ x_1, x_2 \ge 0 \end{vmatrix}$$

12. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 3, 0, 0) \end{bmatrix}$$

$$\mathbf{C} \boxed{ (x_1, x_2, s_1, s_2) = \\ (2, 0, 0, 0) }$$

$$\mathbf{B} \boxed{ (x_1, x_2, s_1, s_2) = \\ (1, 2, 0, 0) }$$

$$\mathbf{A} (x_1, x_2, s_1, s_2) = (0, 0, 1, 2)$$

13. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

14. إذا كانت المتغيرات الأساسية هي (x_2, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 4, 0, 3) \end{pmatrix}$$

$$\mathbf{C} \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 4, 0, -3) \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (3, 0, -4, 0) \end{bmatrix}$$

$$\mathbf{A} \begin{vmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 3, 2, 0) \end{vmatrix}$$

15. إذا كانت المتغيرات الأساسية هي (x_2,s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

A H

16. إذا كانت المتغيرات الأساسية هي (x_1, s_1) ، فإن الحل الأساسي سيكون:

السؤال الثالث:

$$\max z = -2x_1 - 3x_2 + x_3$$

ليكن لدينا البرنامج الخطى التالى:

s. t.
$$2x_1 - 4x_2 + 2x_3 \le 2$$

$$2x_1 - 2x_2 + x_3 \le 2$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$, $x_3 \ge 0$

17. بعد تحويل البرنامج الخطى للصيغة القياسية ، سوف يتم تكوين جدول السمبلكس المبدئي التالي:

В	BV	X ₁	X ₂	x ₃	s ₁	s_2	RHS
	Z	- 2	- 3	1	0	0	0
	s ₁	2	- 4	2	1	0	2
	s_2	2	- 2	1	0	1	2

A	BV	X ₁	\boldsymbol{x}_2	x ₃	s ₁	s_2	RHS
	Z	2	3	- 1	0	0	0
	s ₁	2	4	2	1	0	2
	s_2	2	2	1	0	1	2

D	BV	<i>X</i> ₁	<i>X</i> ₂	X ₃	s ₁	s_2	RHS
	Z	2	3	- 1	0	0	0
	<i>X</i> ₁	2	- 4	2	1	0	2
	<i>X</i> ₂	2	- 2	1	0	1	2

C	BV	<i>X</i> ₁	X ₂	X ₃	s ₁	s_2	RHS
	Z	2	3	- 1	0	0	0
	S ₁	2	- 4	2	1	0	2
	s_2	2	- 2	1	0	1	2

18. في جدول السمبلكس المبدئي ، اختبار النسبة الصغرى (ratio test) هو:

	ratio test
D	2/4 = 1/2
	2/2 = 1

$$\begin{array}{c|c}
 & \underline{\text{ratio test}} \\
\hline
 & 2/2 = 1 \\
\hline
 & 2/2 = 1
\end{array}$$

B
$$\frac{\text{ratio test}}{2/2 = 1}$$

 $1/2 = 1/2$

A
$$\frac{\text{ratio test}}{2/2 = 1}$$
$$2/1 = 2$$

19. في جدول السمبلكس المبدئي ، المتغير الأساسي الذي سوف يخرج ليصبح متغير غير أساسي هو:

$$\mathbf{C}$$
 s_1

$$\mathbf{B}$$
 x_2

$$\mathbf{A}$$
 x_1

السؤال الرابع:

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

BV	<i>X</i> ₁	X ₂	X ₃	S_1	S_2	RHS
Z	2	- 2	3	0	0	0
S ₁	1	2	-1	1	0	2
S_2	2	-1	1	0	1	4

بعد معرفة المتغير الداخل والمتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول السمبلكس التالى:

BV	<i>X</i> ₁	X ₂	X ₃	S_1	S_2	RHS
Z	E					F
	Н		K			

هي:	\mathbf{E}	ف	الد	مه قع	في	التي	القيمة	20
.65	-	_		(-5-	5	<u> </u>		• 4 0

		_				_	
D	1	C	2	В	3	A	0

21. القيمة التي في موقع الحرف F هي:

D	2	C	3	В	4	A	1

22. القيمة التي في موقع الحرف H هي:

D	2	C	2.5	В	3	A	1.5	
---	---	---	-----	---	---	---	-----	--

23. القيمة التي في موقع الحرف K هي:

D	0.5	C	1.5	В	1	A	2
---	-----	---	-----	---	---	---	---

24. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث هو:

	$(x \ x \ x \ c \ c) -$		$(x \ x \ x \ c \ c) -$		$(x \ x \ x \ c \ c) =$]	$(x \ x \ x \ c \ c) =$
D	$(x_1, x_2, x_3, s_1, s_2) = (1, 5, 0, 0, 0)$	C	$(x_1, x_2, x_3, s_1, s_2) = (0, 2, 0, 0, 6)$	В	$(x_1, x_2, x_3, s_1, s_2) = (0, 1, 0, 0, 3)$	A	$(x_1, x_2, x_3, s_1, s_2) = $ (0, 1, 0, 0, 5)

25. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث يعتبر حل:

D	غير أمثل	C	غير محدود	В	أمثل	A	غیر ممکن	
---	----------	---	-----------	---	------	---	----------	--