Lab 10 :

Counting of bacterie

Subtitle

طرق قياس النمو البكتيري Measurements of bacterial growth

（我䢒标）
ghtil of chanitas)

Viable plate count by serial Dilution Method

Many studies require the quantitative determination of bacterial populations. The two most widely used methods for determining bacterial numbers are:

The bacteriological tests used most often are

the Standard Plate Count (SPC)

The plate count (VIABLE COUNT)

- However, if the sample is serially diluted and then plated out on an agar surface in such a manner that single isolated bacteria form visible isolated colonies, the number of colonies can be used as a measure of the number of viable (living) cells in that known dilution.
- We are determining the number of Colony-Forming Units (CFUs) in that known dilution.

Bacterial contamination of raw millk can generally occur from three main sources:

1. within the udder.
2. outside the udder.
3. From the surface of
equipment used for milk
handling and storage.

Materials

- Test tubes
- Pipettes (1 ml, graduated).
- Petri plates
- Nutrient milk agar
- Bent glass rod.
- Alcohol 70\%.

First, Preparation of milk agar medie

Prepare 200 ml nutrient agar media.
Add 1 ml of sterilized milk in the prepared sterilized media.
Mix it thoroughly.
Pour the media in petri plates and let them solidify.

Preparation of dilutions :

1. Take six test tubes and add 9 ml of distilled sterilized water (DDW) in each tube and label them as $1,2,3,4,5,6$
2. Transfer 1 ml of the sample (unsterilized milk) to tube no. 1 contained 9 ml DDW and re-flame and cap the sample.
3. Mix the tube thoroughly. And this makes the first dilution.
4. Transfer1 ml from the $1^{\text {st }}$ dilution to test tube no.2. And this makes the second dilution.
5. Repeat the same pattern with other tubes as shown in the diagram.

[^0][^1]
6. From the last three dilutions, transfer $\mathbf{1 m l}$ to prepared milk agar plate
7. Using a turntable and sterile bent glass rod, immediately spread the solution over the surface of the plates.
8. Replace the lid and re-sterilize the glass rod with alcohol and flaming.
9. Repeat for each plate.
10. Incubate the plates converted for 24 hrs at $37^{\circ} \mathrm{C}$.
11.Count the colonies of bacteria after incubation.

Using a Bent Glass Rod and a Turntable to Spread a Bacterial Sample

After incubation (The Results)

Colony counting

- Count the colonies on each plate.
- Select all of the Petri plates containing between 30 and 300 colonies.

Counting of bacteria in Milk (CFU)

Calculation :

Count of cell =

Number of colonies in plate \div (dilution of sample \times volume plated in ml)

$$
=\text { Number of bacteria } / \mathrm{ml} \text {. }
$$

for example; if 32 colonies in plate of $\mathbf{1 / 1 0 , 0 0 0}$ dilution and volume plated 0,5 then the count is :

$$
32 \div(1 / 10,000 \times 0.5)=640,000 \mathrm{cell} / \mathrm{ml}
$$

Colony counting

A plate having 30-300 colonies is chosen because this range is considered statistically significant.

This plate has between 30 and 300 colonies and is a suitable plate for counting.

Colony counting

If there are less than 30 colonies on the plate, small errors in dilution technique or the presence of a few contaminants will have a drastic effect on the final count. 'too few to count (TFTC)'.

This plate less than 30 colonies and is unsuitable plate for counting.

Likewise, if there are more than 300 colonies on the plate, there will be poor isolation and colonies will have grown together. 'too numerous to count (TNTC)'.

This plate has over 300 colonies and cannot be used for counting.

[^0]: Using a Pipette to Remove Bacteria from a Tube

[^1]: Using a Vortex Mixer to Mix
 Bacteria Throughout a Tube

