King Saud University	College of S	Sciences	Department of Mathematics	
Final Evamination	Math 132	Semester I (1/	(46) Time: 3 Hours	

Question 1: (8 marks)

1. Without using truth tables, prove that the following conditional statement is a Tautology:

L.H.S =
$$[(P \rightarrow q) \land P] \lor (q \rightarrow \neg p)$$
. (3 marks)

$$= [(P \rightarrow q) \land P] \lor (q \rightarrow \neg p)$$

$$= [(\neg p \land p) \lor (\neg q \lor \neg p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)] \lor (\neg q \lor \neg p)$$

$$= [(\neg p \land p) \lor (\neg q \land p)] \lor (\neg q \land p)$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg p \land p) \lor (\neg q \land p)]$$

$$= [(\neg$$

2. Let $n \in \mathbb{N}$. Show that: if n^2 is odd, then 1 - n is even. (2 marks)

by condra position
$$79 \rightarrow 79$$

1-n is odd $\stackrel{??}{\Longrightarrow}$ n^2 is onen

suppose 1-n is odd

$$1-n = 2k+1 \quad \text{for some } k \in \mathbb{Z}$$

$$\Rightarrow 1-n = 2k+1 \quad \text{for some } k \in \mathbb{Z}$$

$$\Rightarrow n = -2k \quad \text{o.25}$$

$$\Rightarrow n^2 = (-2k)^2 = 4k^2 = 2(2k^2) \quad \text{o.5}$$

$$\Rightarrow n^2 = (-2k)^2 = 4k^2 = 2(2k^2) \quad \text{o.5}$$

$$\Rightarrow \text{since } (2k^2) \in \mathbb{Z} \quad \text{o.25}$$
Hence, If n^2 is odd \Rightarrow 1-n is entropy.

3. Use mathematical induction to prove the following statement:

9+13+17+...+
$$(4n+5) = n(2n+7)$$
, for each integer n , with $n \ge 1$. (3 marks)

let $P(n)$ be $g+13+...+(4n+5) = n(2n+7)$ $\forall n \ge 1$ 0.22

Basis step $P(1)$ is true

L.H.S = $g = 1(2(1)+7) = R$. H.S 0.5

Inductive step.

Suppose $P(k)$ is true for some $k \ge 1$

That is $g+13+...+(4k+5) = k(2k+7)$ $\rightarrow I$. H

Then bor $k+1$

L.H.S = $g+13+...+(4k+5) = k(2k+7)$ $\rightarrow I$. H

 $= k(2k+7) + 4(k+1) + 5$
 $= k(2k+7) + 4(k+1) + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$
 $= 2k^2 + 7k + 4k + 4k + 5$

Question 2: (15 marks)

1. Let R be the relation on the set \mathbb{Z} defined by

$$a, b \in \mathbb{Z}; \ aRb \iff b = -a$$

Decide whether the relation R is reflexive, symmetric, antisymmetric or transitive. Justify your answers. (4 marks)

Dreflexive, since I + To and I + -1

then R is not reflexive.

Suppose a Rb

Suppose a Rb

b=-a = b => b Ra

then R is symetric

then R is symetric

and I R-1

and -1 RL

Fransitine, since IR-1 and -1 RI

transitine, since IR-1 and -1 RI

but I RI, then R is not

and isymetric

2. Let E be the relation on the set $\mathbb{Z}-\{0\}$ defined by

$$m, n \in \mathbb{Z} - \{0\}; \ mEn \iff 3mn > 0$$

- (a) Show that E is an equivalence relation. (3 marks)
- (b) Find [1] and [-1]. (2 marks)

a) E is veflexive,

Yme Z-{0} 3 mm = 3m² 70 => mEm

E is symetric because

Ym, n e Z-{0} if mEn => 3mn >0

> nEm

= 3nm > 0 => nEm

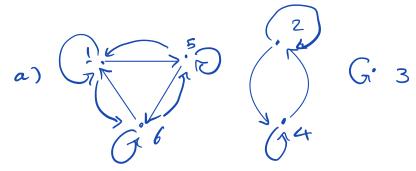
E is transitive, because, It m, n, $r \in \mathbb{Z} - \frac{203}{503}$ and mEn λ n $Er \Rightarrow 3mn > 0$ λ 3nr > 0 \Rightarrow $3^2mn^2r = 3n^2(3mr) > 0$ \Rightarrow $3mr > 0 \Rightarrow mEp$

From the above E is reflexive, symptric and antisymetric = E is an equivalence relation

[1] = 2m \ Z-203: 1 Em 3 = 2m \ Z-203: 3m70 3 = 2m \ Z-203: m70 3 = Zt

[-1] = 2m \ Z-203: -1 Em 3 = 2m \ Z-203: -3m703 = 2m \ Z-203: m<03 = Z-

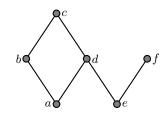
- 3. Let T be the equivalence relation on $A:=\{1,2,3,4,5,6\}$ with equivalence classes $\{1,5,6\}, \{2,4\}$ and $\{3\}.$
 - (a) Draw the digraph of T. (1 marks)
 - (b) List all ordered pairs of T. (2 marks)



b)
$$\{(1,1),(1,5),(1,6),(2,2),(2,4),(3,3)\}$$

 $(4,2),(4,4),(5,1),(5,5),(5,6),(6,1),(6,5)\}$
 $(6,6)$ $\{(6,6)$

4. Let P be the partial ordering relation on the set $B:=\{a,b,c,d,e,f\}$ represented by the following Hasse diagram.



- (a) List all ordered pairs of P. (2 marks)
- (b) Is P a total order. Justify your answer. (P marks)

a) {(a,a), (a,b), (a,d), (a,c), (b,b), (b,c) (d,d), (d,c), (c,c), (e,e), (e,d), (e,c) (e,f), (p,f)}

b) No, a, and e are not comparable (e,a) don't belong to P.

Question 3: (14 marks)

- 1. Consider the sets $X := \{a, b, c\}, Y := \{0, 1, 2\}, \text{ and } Z := \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 0)\}.$ Find the following sets.

(a)
$$(X \times Y) - Z$$
. (1 mark)
 $(X \times Y) - Z$. (1 mark)
 $(X \times Y) - Z = \{(\alpha, 0), (\alpha, 1), (\alpha, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)\}$
 $(X \times Y) - Z = \{(\alpha, 0), (b, 0), (c, 1), (c, 2)\}$

(b)
$$(X \cap Y) \times X$$
. (1 mark)

$$(b) (X \cap Y) \times X. (1 \text{ mark})$$

$$\times \cap Y = \Phi \qquad (X \cap Y) \times X = \Phi$$

(c)
$$\{\emptyset\} \times Z$$
. (1 mark)

- 2. Let f be the function from $C := \{a, b, c, d\}$ to $D := \{0, 1, 2, 3, 4\}$ defined by f(a) = 0, f(b) = 4, and f(c) = f(d) = 1.
 - (a) Find $f(\{a, b\})$ and $f(\{a, c, d\})$. (1 mark)

$$f(\{a,c,d\}) = \{0,1\}$$

(b) Find $f^{-1}(\{0,4\})$ and $f^{-1}(\{1\})$. (1 mark)

(c) Decide whether f is **one to one** or **onto**. Justify your answers. (2 marks)

Not one to one because
$$c \neq d$$
 but $f(c) = f(d) = 1$
Not onto because $\forall x \in C$ $\neq (x) \neq 2$
Rang $(f) = \{0, 1, 4\} \neq D$.

- 3. Let g and h be two function from \mathbb{R} to \mathbb{R} defined by g(x) = 2x 1 and h(x) = 3 3x.
 - (a) Find $g \circ h$ and $h \circ g$. (2 marks)
 - (b) Prove that g is a one to one correspondence function. (2 marks)
 - (c) Find $g^{-1}(x)$, for all $x \in \mathbb{R}$. (1 mark)
 - (d) Decide whether $h \circ g$ is one to one or onto. Justify your answers. (2 marks)

a)
$$g \circ h(x) = g(h(x)) = g(3-3x) = 2(3-3x) - 1$$

= $6-6x$

$$hog(x) = h(g(x)) = h(2x-1) = 3-3(2x-1)$$

= 3-6x+3
= 6-6x

b)
$$g: \mathbb{R} \to \mathbb{R}$$
 $g(x) = 2x - 1$
 g is one to one, because if $x_1, x_2 \in \mathbb{R}$

and
$$g(x) = g(x)$$
 \Rightarrow $2x_1 - 1 = 2x_2 - 1$
 \Rightarrow $2x = 2x_2$ \Rightarrow $x_1 = x_2$

and
$$g(x) = g(x)$$
 \Rightarrow $2x_1 = 2x_2$ \Rightarrow $x_1 = x_2$ \Rightarrow $2x_1 = 2x_2$ \Rightarrow $x_1 = x_2$ \Rightarrow $y \in \mathbb{R}$ \exists $x = \frac{y+1}{2} \in \mathbb{R}$.

g is onto be rause $g(x) = 2x - 1 = 2(\frac{y+1}{2}) - 1 = y$ such that $g(x) = 2x - 1 = 2(\frac{y+1}{2}) - 1 = y$

Hence g is onet to one correspondance.

c)
$$g'(x) = y \iff x = g(g) = 2y^{-1}$$

 $y = \frac{x+1}{2} \implies g''(x) = \frac{x-1}{2}$

d) hog is one to one correspondance hog(x)= 6-6x

is one to one:

$$\forall x_1, x_2 \in \mathbb{R}$$
, $\log (x) = \log (x_2) \iff 6-6x_1 = 6-6x_2$
 $\forall x_1, x_2 \in \mathbb{R}$, $\log (x_1) = \log (x_2) \iff 6-6x_1 = 6-6x_2$

is only $\forall x_1 \neq x_2 \in \mathbb{R}$ $\exists x_1 \neq x_2 \in \mathbb{R}$

$$hog(x) = 6-6x = 6-6(\frac{6-9}{6}) = y$$

Question 4: (3 marks)

- 1. Give the cardinal of each of the following sets.
 - (a) $A_1 := \{k \in \mathbb{Z}; k \text{ is odd}\}.$ (1 mark)
 - (b) $A_2 := [0, \infty) \cap \mathbb{Q}^+$. (1 mark)
- 2. Show that the set $O := \{a \in \mathbb{Z}; 3|a\}$ is countable. (1 mark)

a) A,
$$\leq \mathbb{Z}$$
 \Rightarrow A, has cardinality \mathcal{N}_{0}

b)
$$A_2 \subseteq \mathbb{Q}^+ \Rightarrow A_2$$
 is countable $A_2 \subseteq \mathbb{Q}^+ \Rightarrow A_2 = \mathbb{N}_0$

2.
$$0 = \{a \in \mathbb{Z} : 3 \mid a\}$$

 $0 = \{..., -6, -3, 0, 3, 6, 9, ... \}$
define $\{a \in \mathbb{Z} : 3 \mid a\}$

define
$$f: 0 \rightarrow \mathbb{N}$$
 b
$$f(x) = \begin{cases} 2x & \text{ib } x > 0 \\ -2x & \text{if } x < 0 \end{cases}$$

This can be proved also by
$$0 \le \mathbb{Z}$$
 and \mathbb{Z} is countable.