King Saud University College of Science Department of Mathematics

Course Title:	Mathematical logic				
Course Code:	132 Math				
Course Instructor:	Reem Almahmud				
Exam:	2 nd MIDTERM				
Semester:	1 st term 1445/1446				
Date:	15-11-2023				
Duration:	90 minutes				
Marks:	20				

Privileges: Calculator is not Permitted

Student Name:	
Student ID:	
Section No:	54945
Serial No:	

Instructions:

- Cell Phones should be switched off or on silent mode during the exam.
- Write your answers directly on the question sheet.
- There are 4 questions in 5 pages.

Official Use Only							
Question	Students Marks	Question Marks					
1		10					
2		3					
3		2					
4		5					
Total		20					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

Q1: Choose the correct answer and write it in the top table:

1- The power set $\mathcal{P}(A)$, where $A = \{\phi, \{\phi\}\}\$ is

a) $\{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}\}$

b) $\{\phi, \{\phi\}\}$

c) $\{\phi, \{\phi\}, \{\phi, \{\phi\}\}\}$

d) $\{\{\phi\}, \{\phi, \{\phi\}\}\}\}$

2- $\{x | x \text{ is an integer such that } x^2 = 3\} =$

a) $\{3, -3\}$

b) $\{\sqrt{3}, -\sqrt{3}\}$

c) **φ**

d) {3}

3- One of the following statements is true

a) $\{0\} \in \{0\}$

b) $\{0\} \subseteq \phi$

c) $0 \in \phi$

 $\mathrm{d})\left\{\phi\right\}\subseteq\left\{\phi\right\}$

4- The cardinality of the set $\mathcal{P}(\mathcal{P}(\phi))$ is

a) 2

b) 4

c) 0

d) 1

5- If A - B = A, then

a) $A \subseteq B$

b) A = B

c) $B \subseteq A$

d) $A \cap B = \phi$

6- The relation R represented in the diagraph

a) Reflexive only

- b) Reflexive and symmetric
- c) Reflexive, symmetric, antisymmetric, and transitive
- d) Reflexive, symmetric and transitive

7- If
$$R_1 = \{(a, b) \in \mathbb{R}^2 | a \ge b\}$$
, and $R_2 = \{(a, b) \in \mathbb{R}^2 | a \ne b\}$. Then, $R_2 - R_1 =$

a) $\{(a,b) \in \mathbb{R}^2 | a=b \}$

b) $\{(a, b) \in \mathbb{R}^2 | a \le b \}$

c) $\{(a, b) \in \mathbb{R}^2 | a < b\}$

 $d) \{(a,b) \in \mathbb{R}^2 | a \neq b \}$

8- If
$$R_1 = \{(a, b) \in \mathbb{R}^2 | a \ge b\}$$
, and $R_2 = \{(a, b) \in \mathbb{R}^2 | a \ne b\}$. Then, $R_2 \cap R_1 =$

a) $\{(a,b) \in \mathbb{R}^2 | a \neq b\}$

b) $\{(a, b) \in \mathbb{R}^2 | a = b \}$

c) $\{(a, b) \in \mathbb{R}^2 | a \le b\}$

d) $\{(a, b) \in \mathbb{R}^2 | a > b\}$

9- The set
$$\{(1,2), (2,4), (3,8), (4,16)\}$$
 represents the relation

a) $xRy \Leftrightarrow x + 2 < y$

b) $xRy \Leftrightarrow y = 2^x$

c) $xRy \Leftrightarrow x + y \text{ is odd}$

d) $xRy \Leftrightarrow x + y$ is even

10- If
$$R = \{(x, y) \in \mathbb{R}^2 | x > y\}$$
. Then, $R^{-1} =$

a) $\{(x,y) \in \mathbb{R}^2 | x \leq y\}$

b) $\{(x, y) \in \mathbb{R}^2 | x = y \}$

c) $\{(x, y) \in \mathbb{R}^2 | x < y\}$

d) φ

Q2: I - **Prove** the following statement:

$$\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$$

Q2

Q3

Q3: Let R_1 and R_2 be relations on a set A represented by the matrices:

$$M_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad M_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- I- Find $M_{R_2 \circ R_1}$
- II- **Represent** $R_2 \circ R_1$ by a diagram. (Take A={a,b,c})

Q4: Let *R* be a relation defined on \mathbb{Z} by $aRb \Leftrightarrow 3|a^2 - b^2$.

- I- **Prove** that R is an equivalence relation.
- II- **Find** the equivalence class [4].