King Saud University College of Science Department of Mathematics

Course Title:	Mathematical logic
Course Code:	132 Math
Course Instructor:	Reem Almahmud
Exam:	1 st MIDTERM
Semester:	1 st term 1445/1446
Date:	04-10-2023
Duration:	2 Hrs
Marks:	25

Privileges: Calculator is not Permitted

Student Name:	
Student ID:	
Section No:	54945
Serial No:	

Instructions:

- Cell Phones should be switched off or on silent mode during the exam.
- Write your answers directly on the question sheet.
- There are 4 questions in 5 pages.

Official Use Only					
Question	Students Marks	Question Marks			
1		6			
2		7			
3		7			
4		5			
Total		25			

(1)	(2)	(3)	(4)	(5)	(6)

Q1: Choose the correct answer and write it in the top table:

1- The truth value of the statement "For all positive integers x, if $x^2 < 0$, then x + 1 > 2"

a) True

b) False

c) Undetermined

d) None

2- Let P(x, y) be the statement "x - 3y - 6 = 0". Then,

a) P(1,6) is true

b) P(9,1) is true

c) P(1,9) is true

d) P(6,1) is true

3- $\neg [\forall x (1 + 2x \ge 2 - x \lor x > 0)]$ is equivalent to

a) $\exists x (1 + 2x < 2 - x \land x \le 0)$

b) $\forall x (1 + 2x < 2 - x \land x \le 0)$

c) $\exists x (1 + 2x < 2 - x \ \lor x \le 0)$

d) $\exists x (1 + 2x \ge 2 - x \lor x > 0]$

4- Let Q(x) be the statement "x + 4 > 3x", with the domain to the set of integers. Which of the following statements is true:

a) $\forall x \ Q(x)$

b) $\exists x \ Q(x)$

c) Q(5)

d) Q(10)

5- The inverse of the conditional statement "If n is odd, then n^2 is odd" is

a) If n^2 is even, then n is even

b) If n^2 is odd, then n is odd

c) If n is even, then n^2 is even

d) None

6- The proposition $(p \lor \neg p) \rightarrow p$ is a

a) Tautology

b) Contradiction

c) Contingency

d) None

Q2: I - **Prove** the following statement:

I - $n^2 + 1 \ge 2^n$ where n is a positive integer with $1 \le n \le 4$.

II - Prove that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology, (Use two different ways).

Q3: Prove the following statements:	Q3				
I- If n is integer and $3n + 2$ is even, then n is even. (Use two different methods)					
II - If $m + n$ and $n + p$ are even integers, where m, n and p are integers, then $m + p$ is even. (Use dis	rect method)				
	pg.4				

Q4: Prove that

 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{n}$, for a positive integer n.