King Saud University

College of Science
Department of Mathematics

```
    Course Title: Mathematical logic
    Course Code: 132 Math
Course Instructor: Reem Almahmud
        Exam: Final Exam
    Semester: 1 1 st term 1444/1445
        Date: 18-10-2023
    Duration: 3 Hours
        Marks: 40
```

Privileges: Calculator is not Permitted
Student Name:
Student ID:
Section No:
Serial No:

Instructions:

- Cell Phones should be switched off or on silent mode during the exam.
- Write your answers directly on the question sheet.
- There are 5 questions in 6 pages.

Official Use Only		Question Marks
Question	Students Marks	15
$\mathbf{1}$		6
$\mathbf{2}$		6
$\mathbf{3}$		7
$\mathbf{4}$		6
$\mathbf{5}$		40
Total		

Q1: a) without using the truth table, prove the following:

$$
A \rightarrow(B \rightarrow C) \equiv(A \rightarrow B) \rightarrow(A \rightarrow C) .3 \text { points }
$$

b) Decide whether each of the following statements is true of false, justify your answer:
i) $\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}, \quad \forall x, y \in \mathbb{R} .2$ points
ii) If $x<1$, then $x^{n} \leq 1, \quad \forall x \in \mathbb{R}, n \in \mathbb{N}$. 2points
iii) $\overline{\bar{A} \cap(A \cup B)}=A \cup \bar{B}$. 2points
iv) If A and B are sets, A is uncountable and $A \subseteq B$, then B is uncountable. 2points
c) Use mathematical induction to show that $n<2^{n}, \quad \forall n \in \mathbb{Z}^{+} .4$ points

Q2: If $A=\{a, b, c, d, e, n\}, B=\{1,2,3,4,5,6\}$, and the function $f: A \rightarrow B$ defined by the given graph. Let $A_{1}, A_{2} \subseteq A, B_{1}, B_{2} \subseteq B$ where $A_{1}=\{a, b, d\}$, $A_{2}=\{c, d, e\}, B_{1}=\{1,2,3\}, B_{2}=\{2,4,5\}$.
a) Find $f^{-1}\left(B_{1} \cup B_{2}\right)$. Point

b) Find $f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$. Point
c) Is $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right) .2$ points
d) Determine whether the given function is one-to-one, onto. 2points

Q3: If $\mathbb{R} \xrightarrow{f} \xrightarrow[R]{g} \mathbb{R} \xrightarrow{h} \mathbb{R}$, such that $f(x)=x+1, g(x)=2 x, h(x)=\sin x$.
a) Prove that f is a one-to-one correspondence. 2points
b) Find h^{-1} of the function h. Point
c) Find $h^{-1} \circ h$. Point
d) Show that $(h \circ g) \circ f=h \circ(g \circ f) .2$ points

Q4: a) Let R be the relation from the set of integers \mathbb{Z} defined as follows:

$$
\text { let } n \in \mathbb{N}, a R b \leftrightarrow \exists q \in \mathbb{Z} s . t a-b=q n
$$

i) Show that R is an equivalence relation on \mathbb{Z}. 3points
ii) Find [2]. Point
b) Given $S_{1}=\{1\}, S_{2}=\{-2,-1\}, S_{3}=\{0,2,3\}$ and $S_{4}=\{-3,4\}$ be the equivalence classes of the relation T on the set $S=\{-3,-2,-1,0,1,2,3,4\}$.
i) Draw the digraph of T. Point
ii) List all the ordered pairs in the relation T. 2points

Q5: Let P be the relation defined on the set \mathbb{Z}^{+}of positive integer by:

$$
\forall m, n \in \mathbb{Z}^{+}, m P n \leftrightarrow \frac{n}{m} \text { is odd }
$$

i) Show that P is a partially ordering relation on \mathbb{Z}^{+}. 3points
ii) Is P a total ordering relation on \mathbb{Z}^{+}? point
iii) Let $C=\{1,2,3,4,6,8,9\}$. Draw the hasse diagram of P on the set C. 2points

