King Saud University

Faculty of Sciences

Department of Mathematics

```
First Examination Math 132 Semester I 1439-1440
Time: 1H30
```

Exercise 1: $(4+3+(4+2))$

1. Use a truth table to verify that the following conditional statement is a tautology:

$$
[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r
$$

2. Without using truth tables, prove that the following statement is a contradiction:

$$
p \wedge(p \rightarrow q) \wedge(p \rightarrow \neg q)
$$

3. (a) Without using truth tables, prove the following logical equivalence:

$$
\neg[p \vee(\neg p \wedge q)] \equiv(\neg p \wedge \neg q)
$$

(b) Deduce from a) the following logical equivalence:

$$
\neg[(r \rightarrow w) \vee((r \wedge \neg w) \wedge q)] \equiv((r \wedge \neg w) \wedge \neg q)
$$

Exercise 2: $(3+3+3+3)$

1. Given an integer n, prove by contraposition the following statement:

$$
\text { if the integer } 5 n+7 \text { is even, then the integer } n \text { is odd. }
$$

2. Given real numbers x, y, and z, prove by contradiction the following statement:

$$
\text { if }(x+y+z=58) \text {, then }(x \geq 16 \text { or } y \geq 38 \text { or } z \geq 4)
$$

3. Use mathematical induction to prove the following statement:

$$
\sum_{k=0}^{n-1}(2 k+1)=n^{2}, \quad \text { for each integer } n \text { with } n \geq 1
$$

4. Consider the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined as follows:
$a_{0}=6, a_{1}=9$, and $a_{n}=2 a_{n-1}-a_{n-2} ; \forall n \geq 2$.
Use mathematical induction to prove the following statement:

$$
a_{n}=3 n+6, \quad \text { for each integer } n, \text { with } n \geq 0
$$

