

King Saud University

MATH 132

Department of Mathematics

1st semester 1446 H.

Duration: 75 Minutes

2st midterm exam

Question Number	I	п	III	IV	V	VI	Total
Mark							
	3	3	4	2	3	5	20

- I. Let $R = \{(a, b): b \ge 2a\}$, and $S = \{(x, y): x 2y = 0\}$. Where R and S are defined on \mathbb{Z} .
 - a. Find:

i. $R^{\circ}S$.

ii. S^{-1} .

iii. \overline{R}

iv. Symmetric closure of *S*.

b. Is *S* an equivalence relation? Justify your answer.

II. Let T be a partial order relation defined on A = {1, 2, 3, 4, 5, 6} defined by T = {(a, b): a - b = 2k, where k is a nonnegative integer}.
a. List all ordered pairs.

b. Give an example of comparable elements and not comparable elements.

c. Drow the Hass diagram of *T*.

d. Is *T* a total order relation? Justify your answer.

III. Let *T* be a relation on \mathbb{Z}^+ defined by $aTb \Leftrightarrow \frac{a}{b} \in \mathbb{Z}^+$. Is this relation a. Reflexive?

b. Symmetric?

c. Antisymmetric?

d. Transitive?

IV. Let A be a set, R and S be relations on A. Prove that : a. $R \cup R^{-1}$ is symmetric.

b. If both *R* and *S* reflexive relations on *A*, then $R \cap S$ is reflexive.

V. Let $R = \{(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ be a relation on $A = \{1, 2, 3, 4, 5\}$.

- i) Represent *R* using a directed graph.
- ii) Is *R* reflexive, symmetric, transitive? Justify your answer in each case.

1. Prove that the relation $\equiv (mod \ 5)$ is an equivalence relation and <u>find all equivalent</u> <u>classes</u>.

Good Luck