Chapter 13

Concrete Form Design

Concrete Form Design

• SLAB FORM DESIGN Method

- <u>https://www.youtube.com/watch?v=jggeUUbPHZs</u>
- https://www.youtube.com/watch?v=uGU8xgJykO0

Formwork Design

• Floor and Roof formwork Design:

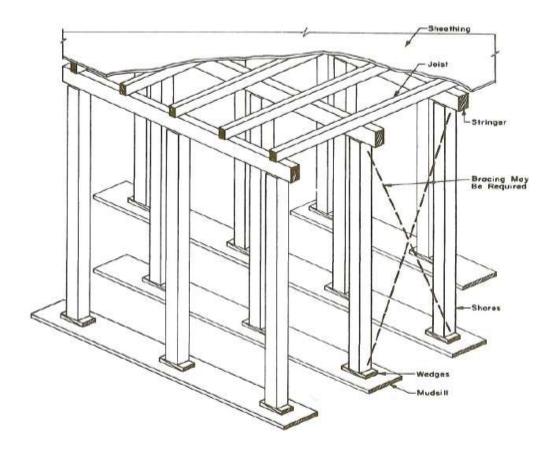
The design load that acts on the slab form consist of :

- self-weight of the reinforced slab plus
- the live load and,
- the weight of the formwork themselves.

- * The American concrete institute (ACI) recommended a minimum live load of:
- □ 2.4 kPa
- In case of motorized concrete buggies are used
- □ 3.6 kPa
- ***** ACI recommended a minimum design load (dead plus live):
- □ 4.8 kPa
- In case of motorized concrete buggies are used :
- 🗖 6.0 kPa

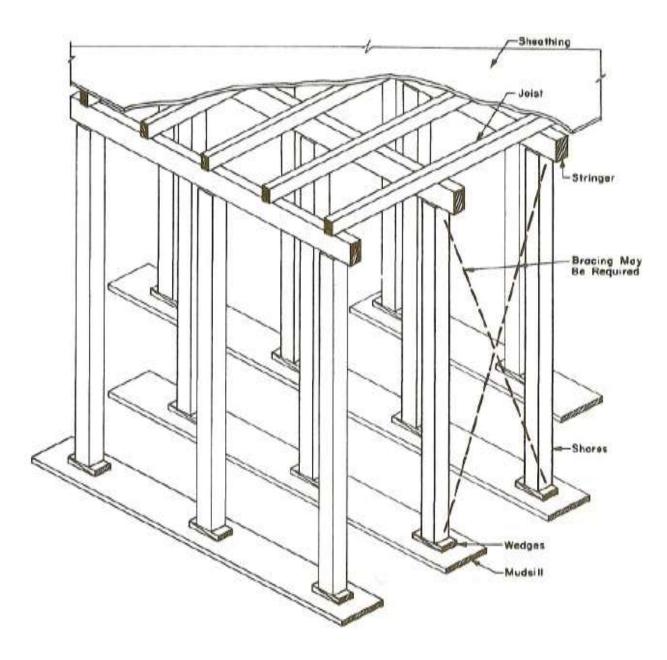
Design steps:

□ Specify the design load.


- Analyzing the sheathing, joist and stringers as beam under uniformly distributed load supported over one of the three conditions (single span - two spans - three spans or larger).
- Determining the allowable span for slab from table 13 5& 13-5A by considering the smallest span based on the value of bending, shear and deflection.

Design steps (cont.)

Design the sheathing.


Design the joist.

Design the stringers.

□ Check the stringer spans and shore capacity.

□ Check the crushing between joist and stringer.

Maximum bending moment, shear force and deflection developed by uniformly distributed load can be obtained from table below:

	Support Conditions					
Туре	1 Span	2 Spans	3 Spans			
Bending moment (inlb)	$M = \frac{Wl^2}{96}$	$M = \frac{Wl^2}{96}$	$M = \frac{wl^2}{120}$			
Shear (lb)	$V = \frac{W}{24}$	$V = \frac{5wl}{96}$	$V = \frac{W}{20}$			
Deflection (in.)	$\Delta = \frac{5wl^4}{4608El}$	$\Delta = \frac{wl^4}{2220El}$	$\Delta = \frac{wl^4}{1740E}$			

Table 13-4 Maximum bending, shear, and deflection in a uniformly loaded beam

Notation:

I =length of span (in.)

w = uniform load per foot of span (lb/ft)

E = modulus of elasticity (psi)

I = moment of inertia (in.⁴)

Bending

$$f_b = \frac{M}{S} \tag{13-5}$$

Shear

$$f_{\nu} = \frac{1.5V}{A}$$
 for rectangular wood members (13-6)

$$f_{\nu} = \frac{V}{Ib/Q}$$
 for plywood (13–7)

Compression

$$f_c \operatorname{or} f_{c\perp} = \frac{P}{A} \tag{13-8}$$

Tension

$$f_t = \frac{P}{A} \tag{13-9}$$

where $f_b = \text{actual unit stress for extreme fiber in bending (psi)}$ $f_c = \text{actual unit stress in compression parallel to grain (psi)}$ $f_{c\perp} = \text{actual unit stress in compression perpendicular to grain (psi)}$ $f_t = \text{actual unit stress in tension (psi)}$

- f_v = actual unit stress in horizontal shear (psi)
- A =section area (sq in.)
- M =maximum moment (in.-lb)
- P = concentrated load (lb)
- S = section modulus (cu in.)
- V = maximum shear (lb)

Ib/Q = rolling shear constant (sq in./ft)

The maximum fiber stress developed in bending, shear and compression resulting from a specified load can be determined from the upper equations.

Species (No. 2 Grade, 4×4	Allowable Unit Stress (lb/sq in.)[kPa] (Moisture Content = 19%)						
[100 × 100 mm] or smaller)	F _b	Fv	$F_{c\perp}$	F _c	F _t	E	
Douglas fir—larch	1450	185	385	1000	850	1.7 × 10 ⁶	
Douglas III Iaion	[9998]	[1276]	[2655]	[6895]	[5861]	$[11.7 \times 10^{6}]$	
Hemlock—fir	1150	150	245	800	675	1.4×10^{6}	
	[7929]	[1034]	[1689]	[5516]	[4654]	$[9.7 \times 10^{6}]$	
Southern pine	1400	180	405	975	825	1.6×10^{6}	
Coulier pillo	[9653]	[1241]	[2792]	[6723]	[5688]	$[11.0 \times 10^{6}]$	
California redwood	1400	160	425	1000	800	1.3×10^{6}	
ounorna reavised	[9653]	[1103]	[2930]	[6895]	[5516]	$[9.0 \times 10^{6}]$	
Eastern spruce	1050	140	255	700	625	1.2×10^{6}	
Lastern sprace	[7240]	[965]	[1758]	[4827]	[4309]	[8.3×10 ⁶]	
Reduction factor for wet conditions	0.86	0.97	0.67	0.70	0.84	0.97	
Load duration factor (7-day load)	1.25	1.25	1.25	1.25	1.25	1.00	

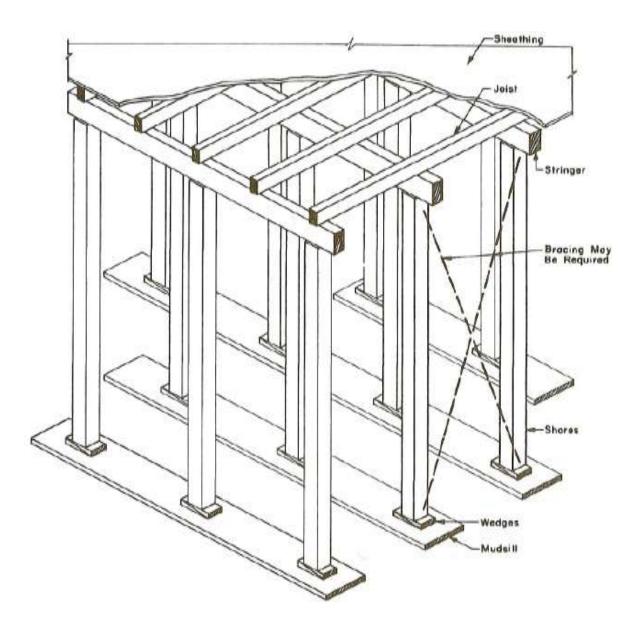
Table 13-8 Typical values of allowable stress for lumber

		Support Conditions	
Design Conditions	1 Span	2 Spans	3 or More Spans
Bending		54	
Wood	$\ell = \frac{36.5}{1000} d \left(\frac{F_b b}{w} \right)^{\frac{1}{2}}$	$\ell = \frac{36.5}{1000} d \left(\frac{F_b b}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{40.7}{1000} d \left(\frac{F_b b}{w}\right)^{\frac{1}{2}}$
	$\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$
Plywood	$\ell = 2.83 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$	$\ell = 2.83 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$	$\ell = 3.16 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$
Shear	X 7	X /	(/
Wood	$\ell = \frac{1.34}{1000} \frac{F_v A}{w} + 2d$	$\ell = \frac{1.07}{1000} \frac{F_v A}{w} + 2d$	$\ell = \frac{1.11}{1000} \frac{F_v A}{w} + 2d$
Plywood	$\ell = 2.00 \frac{F_s lb/Q}{w} + 2d$	$\ell = 1.60 \frac{F_s lb/Q}{w} + 2d$	$\ell = 1.67 \frac{F_s lb/Q}{w} + 2d$
Deflection	$\ell = \frac{526}{1000} \left(\frac{E/\Delta}{w}\right)^{\frac{1}{4}}$	$\ell = \frac{655}{1000} \left(\frac{El\Delta}{w}\right)^{1/4}$	$\ell = \frac{617}{1000} \left(\frac{E/\Delta}{w}\right)^{1/4}$
If $\Delta = \frac{1}{180}$	$\ell = \frac{75.1}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{101}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{93.0}{1000} \left(\frac{El}{w}\right)^{\frac{1}{3}}$
If $\Delta = \frac{1}{240}$	$\ell = \frac{68.5}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{91.7}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{84.7}{1000} \left(\frac{El}{w}\right)^{\frac{1}{3}}$
If $\Delta = \frac{1}{360}$	$\ell = \frac{59.8}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{79.9}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{73.8}{1000} \left(\frac{El}{w}\right)^{\frac{1}{3}}$
Compression	$f_c \text{ or } f_{c\perp} = \frac{P}{A}$		₫~~ <u>.</u> 2)
Tension	$f_t = \frac{P}{A}$		

Table 13-5A Metric (SI) concrete form design equations

Nominal Size (<i>b</i> × <i>d</i>)	Actual Size (S4S)		Area	Area of Section A		Modulus S	Moment of Inertia /	
in.	in.	mm	in.2	10 ³ mm ²	in. ³	10 ⁵ mm ³	in.4	10 ⁶ mm ⁴
1×3	0.75 × 2.5	19×64	1.875	1.210	0.7812	0.1280	0.9766	0.4065
1×4	0.75 × 3.5	19×89	2.625	1.694	1.531	0.2509	2.680	1.115
1×6	0.75×5.5	19×140	4.125	2.661	3.781	0.6196	10.40	4.328
1×8	0.75 × 7.25	19×184	5.438	3.508	6.570	1.077	23.82	9.913
1 × 10	0.75 × 9.25	19×235	6.938	4.476	10.70	1.753	49.47	20.59
1 × 12	0.75 × 11.25	19×286	8.438	5.444	15.82	2.592	88.99	37.04
2×3	1.5×2.5	38×64	3.750	2.419	1.563	0.2561	1.953	0.8129
2×4	1.5×3.5	38 × 89	5.250	3.387	3.063	0.5019	5.359	2.231
2×6	1.5×5.5	38 × 140	8.250	5.323	7.563	1.239	20.80	8.656
2×8	1.5 × 7.25	38 × 184	10.88	7.016	13.14	2.153	47.63	19.83
2 × 10	1.5 × 9.25	38×235	13.88	8.952	21.39	3.505	98.93	41.18
2 × 12	1.5 × 11.25	38 × 286	16.88	10.89	31.64	5.185	178.0	74.08
2×14	1.5 × 13.25	38 × 337	19.88	12.82	43.89	7.192	290.8	121.0
3×4	2.5 × 3.5	64 × 89	8.750	5.645	5.104	0.8364	8.932	3.718
3×6	2.5 × 5.5	64 × 140	13.75	8.871	12.60	2.065	34.66	14.43
3×8	2.5×7.25	64 × 184	18.12	11.69	21.90	3.589	79.39	33.04
3×10	2.5 × 9.25	64×235	23.12	14.91	35.65	5.842	164.9	68.63
3×12	2.5 × 11.25	64×286	28.12	18.14	52.73	8.642	296.6	123.5
3×14	2.5 × 13.25	64 × 337	33.12	21.37	73.15	11.99	484.6	201.7
3×16	2.5 × 15.25	64 × 387	38.12	24.60	96.90	15.88	738.9	307.5
4×4	3.5 × 3.5	89×89	12.25	7.903	7.146	1.171	12.50	5.205
4×6	3.5 × 5.5	89×140	19.25	12.42	17.65	2.892	48.53	20.20
4×8	3.5 × 7.25	89×184	25.38	16.37	30.66	5.024	111.1	46.26
4×10	3.5 × 9.25	89×235	32.38	20.89	49.91	8.179	230.8	96.08
4 × 12	3.5 × 11.25	89×286	39.38	25.40	73.83	12.10	415.3	172.8
4 × 14	3.5 × 13.25	89 × 337	46.38	29.92	102.4	16.78	678.5	282.4
4×16	3.5 × 15.25	89 × 387	53.38	34.43	135.7	22.23	1034	430.6
5×6	5.5 × 5.5	140 × 140	30.25	19.52	27.73	4.543	76.25	19.52
5×8	5.5 × 7.5	140 × 191	41.25	26.61	51.56	8.450	193.4	80.48
6 × 10	5.5 × 9.5	140 × 241	52.25	33.71	82.73	13.56	393.0	163.6
6×12	5.5 × 11.5	140 × 292	63.25	40.81	121.2	19.87	697.1	290.1
6 × 14	5.5 × 13.5	140 × 343	74.25	47.90	167.1	27.38	1128	469.4
6×16	5.5 × 15.5	140 × 394	85.25	55.00	220.2	36.09	1707	710.4

Table 13-7 Section properties of U.S. standard lumber and timber (b = width, d = depth)


EXAMPLE 13-1

- Design the formwork (Figure 13-2) for an elevated concrete floor slab 6 in. (152 mm) thick.
- Sheathing will be nominal 1 in. (25-mm) lumber
- A 2 x 8 in. (50 x 200 mm) lumber will be used for joists.
- Stringers will be 4 x 8 in. (100 x 200 mm) lumber.
- Assume that all members are continuous over three or more spans.
- Commercial 4000-lb (17.8-kN) shores will be used.
- It is estimated that the weight of the formwork will be 5 lb./sq. ft (0.24 kPa).
- The adjusted allowable stresses for the lumber being used are as follows:

EXAMPLE 13-1

	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_{c}		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 \times 10^{6}]$

- Maximum deflection of form members will be limited to $\frac{1}{360}$.
- Use the minimum value of live load permitted by ACI.
- Determine joist spacing, stringer spacing, and shore spacing.

Solution

Design Load. Assume concrete density is 150 lb/cu ft (2403 kg/m³)

```
Concrete = 1 sq ft \times 6/12 ft \times 150 lb/cu ft = 75 lb/sq ft
```

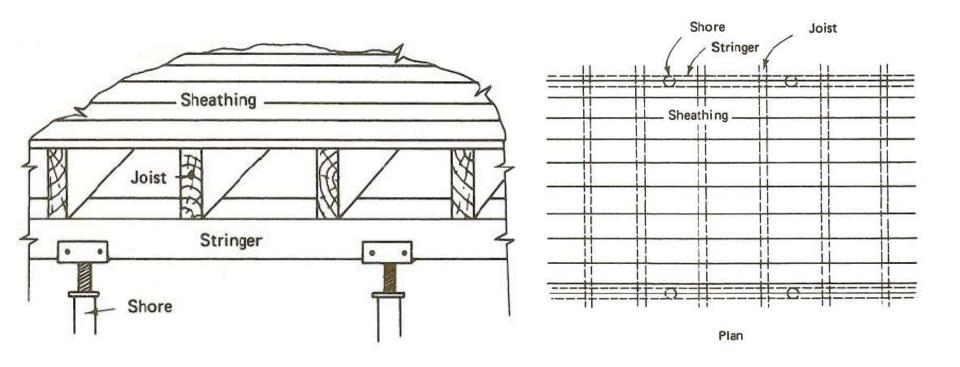
```
Formwork = 5 lb/sq ft
```

```
Live load = 50 lb/sq ft
```

```
Design load = 130 lb/sq ft
```

```
Pressure per m<sup>2</sup>:

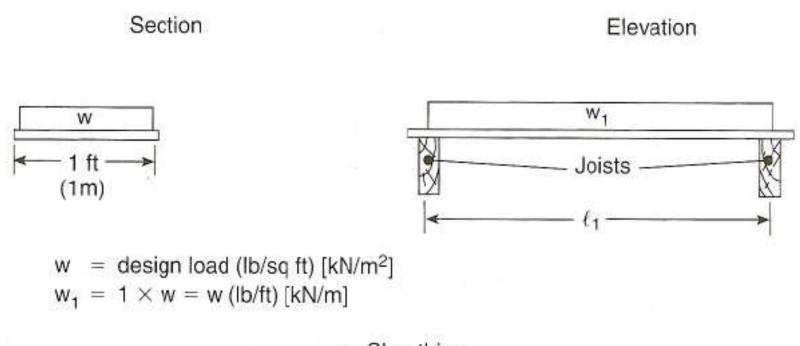
Concrete = 1 \times 0.152 \times 9.8 \times 2403/1000 = 3.58 kPa


Formwork = 0.24 kPa

Live load = 2.40 kPa

Design load = 6.22 kPa
```

```
1 \text{ kPa} = 1 \text{ kN/ m}^2
```


Figure 13-2 Slab form

Deck Design

- Consider a uniformly loaded strip of decking (sheathing) 1 m wide placed perpendicular to the joists (Figure 13-1a) and analyze it as a beam.
- Assume that the strip is continuous over three or more spans and use the appropriate equations of Table 13-5 and 13-5A.
- w =(1 sq ft/lin ft) x (130 lb/sq ft) = 130 lb/ft
- $[w = (1 m^2/lin m) x (6.22 kN/m^2) = 6.22 kN/m]$

Figure 13-1 Design Analysis for form member

a. Sheathing

Deck Design

(a) Bending:

$$\begin{split} l &= 4.46 \ d \left(\frac{F_b b}{w} \right)^{1/2} \\ &= (4.46) \ (0.75) \left(\frac{(1075) \ (12)}{130} \right)^{1/2} = 33.3 \ \text{in.} \\ \\ &\left[l &= \frac{40.7}{1000} \ d \left(\frac{F_b b}{w} \right)^{1/2} \\ &= \frac{(40.7) \ (19)}{1000} \left(\frac{(7412) \ (1000)}{6.22} \right)^{1/2} = 844 \ \text{mm} \end{split} \right] \end{split}$$

	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 \times 10^{6}]$

		Support Conditions		
Design Conditions	1 Span	2 Spans	3 or More Spans	
Bending				
Wood	$\ell = \frac{36.5}{1000} d \left(\frac{F_b b}{w} \right)^{\frac{1}{2}}$	$\ell = \frac{36.5}{1000} d \left(\frac{F_b b}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{40.7}{1000} d \left(\frac{F_b b}{w}\right)^{\frac{1}{2}}$	
	$\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$	$\ell = \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{\frac{1}{2}}$	
Plywood	$\ell = 2.83 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$	$\ell = 2.83 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$	$\ell = 3.16 \left(\frac{F_b KS}{w}\right)^{\frac{1}{2}}$	
Shear	A 97.			
Wood	$\ell = \frac{1.34}{1000} \frac{F_v A}{w} + 2d$	$\ell = \frac{1.07}{1000} \frac{F_v A}{w} + 2d$	$\ell = \frac{1.11}{1000} \frac{F_v A}{w} + 2d$	
Plywood	$\ell = 2.00 \frac{F_s lb/Q}{w} + 2d$	$\ell = 1.60 \frac{F_s lb/Q}{w} + 2d$	$\ell = 1.67 \frac{F_s lb/Q}{w} + 2d$	
Deflection	$\ell = \frac{526}{1000} \left(\frac{E/\Delta}{w}\right)^{\frac{1}{4}}$	$\ell = \frac{655}{1000} \left(\frac{El\Delta}{w}\right)^{1/4}$	$\ell = \frac{617}{1000} \left(\frac{EI\Delta}{w}\right)^{\frac{1}{4}}$	
If $\Delta = \frac{1}{180}$	$\ell = \frac{75.1}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{101}{1000} \left(\frac{El}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{93.0}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	
If $\Delta = \frac{1}{240}$	$\ell = \frac{68.5}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{91.7}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{84.7}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	
If $\Delta = \frac{1}{360}$	$\ell = \frac{59.8}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{79.9}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{3}}$	$\ell = \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{\frac{1}{2}}$	
Compression	$f_c \text{ or } f_{c\perp} = \frac{P}{A}$		1000 B	
Tension	$f_t = \frac{P}{A}$			

Table 13-5A Metric (SI) concrete form design equations

Deck Design

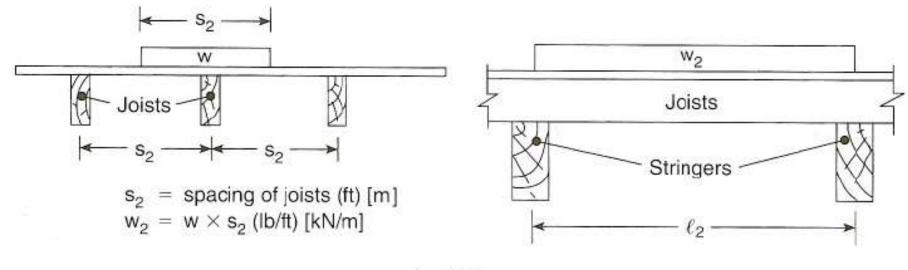
(b) Shear:

$$\begin{split} l &= 13.3 \ \frac{F_v A}{w} + 2d \\ &= \frac{(13.3) \ (174) \ (12) \ (0.75)}{130} + (2) \ (0.75) = 161.7 \text{ in.} \\ \\ \left[l &= \frac{1.11}{1000} \ \frac{F_v A}{w} + 2d \\ &= \frac{(1.11) \ (1200) \ (1000) \ (19)}{(1000) \ (19)} + (2) \ (19) = 4107 \text{ mm} \\ \end{array} \right] \end{split}$$

	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes 10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 imes 10^6]$

Deck Design

(c) Deflection:


$$l = 1.69 \left(\frac{EI}{w}\right)^{1/3} = 1.69 \left(\frac{Ebd^3}{w \ 12}\right)^{1/3}$$
$$= 1.69 \left(\frac{(1.36 \times 10^6) \ (12) \ (0.75)^3}{(130) \ (12)}\right)^{1/3} = 27.7 \text{ in.}$$
$$\left[l = \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3} = \frac{73.8}{1000} \left(\frac{Ebd^3}{w \ 12}\right)^{1/3}$$
$$= \frac{73.8}{1000} \left(\frac{(9.4 \times 10^6) \ (1000) \ (19)^3}{(12) \ (6.22)}\right)^{1/3} = 703 \text{ mm}$$

	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 imes10^6]$

- Deflection governs in this case and the maximum allowable span is 27.7 in. (703 mm).
- We will select a 24-in. (610-mm) joist spacing as a modular value for the design.

- Consider the joist as a uniformly loaded beam supporting a strip of design load 24 in. (610 mm) wide (same as joist spacing; see Figure 13-1b).
- Joists are 2 x 8 in. (50 x 200 mm) lumber.
- Assume that the joists are continuous over three spans.
- w =(2 ft) x (1) x (130 lb/sq ft) =260 lb/ft
- [w = (0.610 m) x (1) x (6.22 kPa) = 3.79 kN/m]

Figure 13-1 Design Analysis for form member

b. Joists

(a) Bending:

$$l = 10.95 \left(\frac{F_b S}{w}\right)^{1/2}$$

= 10.95 $\left(\frac{(1250) (13.14)}{260}\right)^{1/2} = 87.0$ in.
$$l = \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{1/2}$$

= $\frac{100}{1000} \left(\frac{(8619) (2.153 \times 10^5)}{3.79}\right)^{1/2} = 2213$ mm

	Sheathing psi [kPa]	Other Members psi [kPa]
$\overline{F_b}$	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 imes 10^6]$

Nominal Size (b × d)	ze Actual Size				Section	Modulus S	Moment of Inertia /	
in.	in.	mm	in.2	10 ³ mm ²	in. ³	10 ⁵ mm ³	in.4	10 ⁶ mm ⁴
1×3	0.75×2.5	19×64	1.875	1.210	0.7812	0.1280	0.9766	0.4065
1×4	0.75 × 3.5	19×89	2.625	1.694	1.531	0.2509	2.680	1.115
1×6	0.75×5.5	19×140	4.125	2.661	3.781	0.6196	10.40	4.328
1×8	0.75 × 7.25	19×184	5.438	3.508	6.570	1.077	23.82	9.913
1 × 10	0.75 × 9.25	19×235	6.938	4.476	10.70	1.753	49.47	20.59
1 × 12	0.75 × 11.25	19×286	8.438	5.444	15.82	2.592	88.99	37.04
2×3	1.5×2.5	38 × 64	3.750	2.419	1.563	0.2561	1.953	0.8129
2×4	1.5×3.5	38 × 89	5.250	3.387	3.063	0.5019	5.359	2.231
2×6	1.5×5.5	38 × 140	8.250	5.323	7.563	1.239	20.80	8.656
2×8	1.5×7.25	38 × 184	10.88	7.016	13.14	2.153	47.63	19.83
2×10	1.5 × 9.25	38 × 235	13.88	8.952	21.39	3.505	98.93	41.18
2×12	1.5 × 11.25	38 × 286	16.88	10.89	31.64	5.185	178.0	74.08
2×14	1.5×13.25	38 × 337	19.88	12.82	43.89	7.192	290.8	121.0
3×4	2.5 × 3.5	64 × 89	8.750	5.645	5.104	0.8364	8.932	3.718
3×6	2.5×5.5	64×140	13.75	8.871	12.60	2.065	34.66	14.43
3×8	2.5×7.25	64 × 184	18.12	11.69	21.90	3.589	79.39	33.04
3×10	2.5 × 9.25	64 × 235	23.12	14.91	35.65	5.842	164.9	68.63
3 × 12	2.5 × 11.25	64 × 286	28.12	18.14	52.73	8.642	296.6	123.5
3×14	2.5 × 13.25	64 × 337	33.12	21.37	73.15	11.99	484.6	201.7
3×16	2.5 × 15.25	64 × 387	38.12	24.60	96.90	15.88	738.9	307.5
4×4	3.5 × 3.5	89 × 89	12.25	7.903	7.146	1.171	12.50	5.205
4×6	3.5 × 5.5	89 × 140	19.25	12.42	17.65	2.892	48.53	20.20
4×8	3.5 × 7.25	89×184	25.38	16.37	30.66	5.024	111.1	46.26
4 × 10	3.5 × 9.25	89 × 235	32.38	20.89	49.91	8.179	230.8	96.08
4×12	3.5 × 11.25	89×286	39.38	25.40	73.83	12.10	415.3	172.8
4 × 14	3.5 × 13.25	89 × 337	46.38	29.92	102.4	16.78	678.5	282.4
1 10	0.5.45.05	00007	50.00	24 42	135 7	22 23	1034	430.6

Table 13-7 Section properties of U.S. standard lumber and timber (b = width, d = depth)

(b) Shear:

$$l = 13.3 \frac{F_v A}{w} + 2d$$

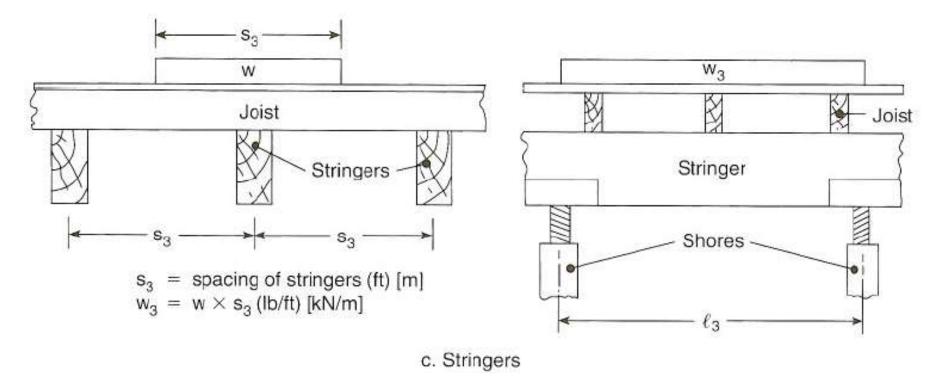
= $\frac{(13.3) (180) (10.88)}{260} + (2) (7.25) = 114.7 \text{ in.}$
$$l = \frac{1.11}{1000} \frac{F_v A}{w} + 2d$$

= $\frac{1.11}{1000} \frac{(1241) (7016)}{3.79} + (2)(184) = 2918 \text{ mm}$

	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes 10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 \times 10^{6}]$

(c) Deflection:

$$\begin{split} l &= 1.69 \left(\frac{EI}{w}\right)^{1/3} \\ &= 1.69 \left(\frac{(1.4 \times 10^6)(47.63)}{260}\right)^{1/3} = 107.4 \text{ in.} \\ \\ &\left[l &= \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3} \\ &= \frac{73.8}{1000} \left(\frac{(9.7 \times 10^6) (19.83 \times 10^6)}{3.79}\right)^{1/3} = 2732 \text{ mm} \\ \\ \end{split}$$


1-1	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
$F_b \\ F_v$	174 [1200]	180 [1241]
$F_{c\perp}$ F_{c} E		405 [2792]
F_c		850 [5861]
E	$1.36 imes 10^6$	$1.40 imes 10^6$
	$[9.4 imes10^6]$	$[9.7 imes 10^6]$

- Thus bending governs and the maximum joist span is 87 in. (2213 mm).
- We will select a stringer spacing (joist span) of 84 in (7 ft). (2134 mm).

Stringer Design

- To analyze stringer design, consider a strip of design load 7 ft (2.13 m) wide (equal to stringer spacing) as resting directly on the stringer (Figure 13-1c).
- Assume the stringer to be continuous over three spans.
- Stringers are 4 x 8 (100 x 200 mm) lumber.
- Now analyze the stringer as a beam and determine the maximum allowable span.
- w =(7) (130) =910 lb/ft
- [w = (2.13)(1)(6.22) = 13.25 kN/m]

Figure 13-1 Design Analysis for form member

Stringer Design

(a) Bending:

$$\begin{split} l &= 10.95 \left(\frac{F_b S}{w}\right)^{1/2} \\ &= 10.95 \left(\frac{(1250) (30.66)}{910}\right)^{1/2} = 71.1 \text{ in.} \\ \\ \left[l &= \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{1/2} \\ &= \frac{100}{1000} \left(\frac{(8619) (5.024 \times 10^5)}{13.25}\right)^{1/2} = 1808 \text{ mm} \end{split}$$

	Sheathing psi [kPa]	Other Members psi [kPa]
$\overline{F_b}$	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 \times 10^{6}]$

Nominal Size (b × d)	Actual Size (S4S)		Area of Section A		Section Modulus S		Moment of Inertia /	
in.	in.	mm	in.2	10 ³ mm ²	in.3	10 ⁵ mm ³	in.4	10 ⁶ mm ⁴
1×3	0.75×2.5	19×64	1.875	1.210	0.7812	0.1280	0.9766	0.4065
1×4	0.75 × 3.5	19×89	2.625	1.694	1.531	0.2509	2.680	1.115
1×6	0.75×5.5	19×140	4.125	2.661	3.781	0.6196	10.40	4.328
1×8	0.75×7.25	19×184	5.438	3.508	6.570	1.077	23.82	9.913
1 × 10	0.75 × 9.25	19×235	6.938	4.476	10.70	1.753	49.47	20.59
1 × 12	0.75 × 11.25	19×286	8.438	5.444	15.82	2.592	88.99	37.04
2×3	1.5×2.5	38 × 64	3.750	2.419	1.563	0.2561	1.953	0.8129
2×4	1.5 × 3.5	38 × 89	5.250	3.387	3.063	0.5019	5.359	2.231
2×6	1.5×5.5	38 × 140	8.250	5.323	7.563	1.239	20.80	8.656
2×8	1.5 × 7.25	38 × 184	10.88	7.016	13.14	2.153	47.63	19.83
2×10	1.5 × 9.25	38 × 235	13.88	8.952	21.39	3.505	98.93	41.18
2×12	1.5×11.25	38 × 286	16.88	10.89	31.64	5.185	178.0	74.08
2×14	1.5×13.25	38 × 337	19.88	12.82	43.89	7.192	290.8	121.0
3×4	2.5×3.5	64 × 89	8.750	5.645	5.104	0.8364	8.932	3.718
3×6	2.5×5.5	64×140	13.75	8.871	12.60	2.065	34.66	14.43
3×8	2.5×7.25	64 × 184	18.12	11.69	21.90	3.589	79.39	33.04
3×10	2.5 × 9.25	64 × 235	23.12	14.91	35.65	5.842	164.9	68.63
3×12	2.5×11.25	64 × 286	28.12	18.14	52.73	8.642	296.6	123.5
3×14	2.5×13.25	64 × 337	33.12	21.37	73.15	11.99	484.6	201.7
3×16	2.5×15.25	64 × 387	38.12	24.60	96.90	15.88	738.9	307.5
4×4	3.5 × 3.5	89 × 89	12.25	7.903	7.146	1.171	12.50	5.205
4×6	3.5×5.5	89 × 140	19.25	12.42	17.65	2.892	48.53	20.20
4×8	3.5 × 7.25	89×184	25.38	16.37	30.66	5.024	111.1	46.26
4 × 10	3.5 × 9.25	89 × 235	32.38	20.89	49.91	8.179	230.8	96.08
4×12	3.5 × 11.25	89 × 286	39.38	25.40	73.83	12.10	415.3	172.8
4 × 14	3.5 × 13.25	89 × 337	46.38	29.92	102.4	16.78	678.5	282.4
	0.5.45.05	00007	50.00	24 42	135 7	22.23	1034	430.6

Table 13-7 Section properties of U.S. standard lumber and timber (b = width, d = depth)

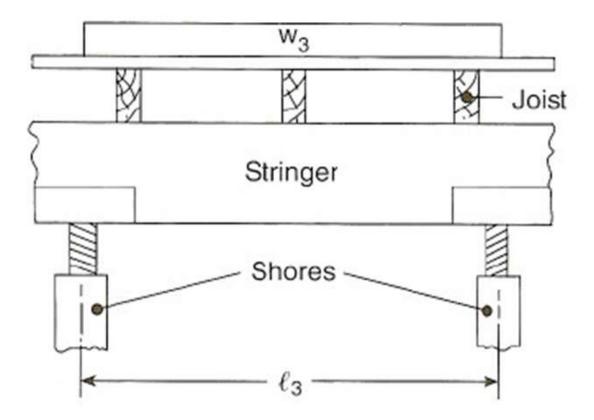
Stringer Design

(b) Shear:

$$\begin{split} l &= \frac{13.3 \ F_v A}{w} + 2d \\ &= \frac{(13.3) \ (180) \ (25.38)}{910} + (2) \ (7.25) = 81.3 \ \text{in.} \\ \\ \left[l &= \frac{1.11}{1000} \ \frac{F_v A}{w} + 2d \\ &= \frac{1.11}{1000} \ \frac{(1241) \ (16.37 \times 10^3)}{13.25} + (2) \ (184) = 2070 \ \text{mm} \\ \end{array} \right] \end{split}$$

51	Sheathing psi [kPa]	Other Members psi [kPa]
F_b	1075 [7412]	1250 [8619]
F_v	174 [1200]	180 [1241]
$F_{c\perp}$		405 [2792]
F_c		850 [5861]
E	$1.36 imes10^6$	$1.40 imes10^6$
	$[9.4 imes10^6]$	$[9.7 \times 10^{6}]$

Stringer Design

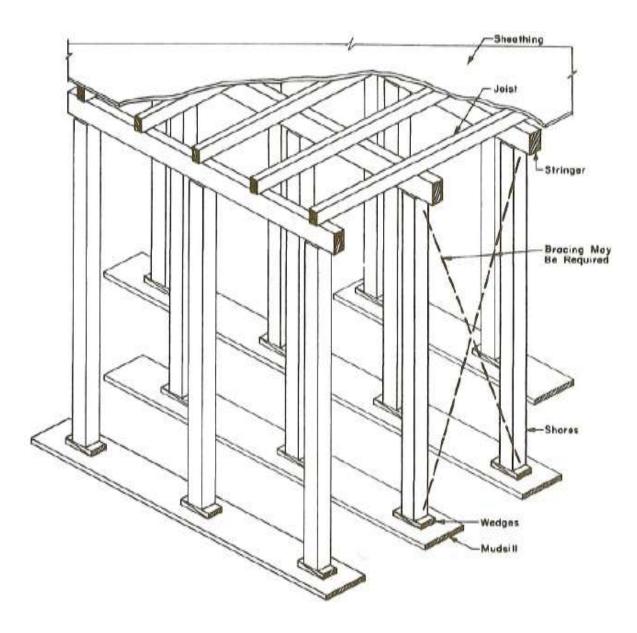

(c) Deflection:

$$\begin{split} l &= 1.69 \left(\frac{EI}{w}\right)^{1/3} \\ &= 1.69 \left(\frac{(1.4 \times 10^6) \ (111.1)}{910}\right)^{1/3} = 93.8 \text{ in.} \\ &\left[l &= \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3} \\ &= \frac{73.8}{1000} \left(\frac{(9.7 \times 10^6) \ (46.26 \times 10^6)}{13.25}\right)^{1/3} = 2388 \text{ mm} \right] \end{split}$$

 Bending governs and the maximum span is 71.1 in. (1808 mm).

Check Shore Strength

• Bending governs, The maximum stringer span is 71.1 in. (1808 mm).



Check Shore Strength

- Now we must check shore strength before selecting the stringer span (shore spacing).
- The maximum stringer span based on shore strength is equal to the shore strength divided by the load per unit length of stringer.

$$l = \frac{4000}{910} \times 12 = 52.7 \text{ in.}$$
$$\left[l = \frac{17.8}{13.25} = 1.343 \text{ m}\right]$$

- Thus the maximum stringer span is limited by shore strength to 52.7 in. (1.343 m).
- We select a shore spacing of 4 ft (1.22 m) as a modular value.

Check for Crushing

- Before completing our design, we should check for crushing at the point where each joist rests on a stringer.
- The load at this point is the load per unit length of joist multiplied by the joist span.

$$\begin{split} P &= (260) \; (84/12) = 1820 \; \text{lb} \\ &[P &= (3.79) \; (2.134) = 8.09 \; \text{kN}] \\ &\text{Bearing area} \; (\text{A}) = (1.5)(3.5) = 5.25 \; \text{sq in.} \\ &[\text{A} &= (38) \; (89) = 3382 \; \text{mm}^2 \;] \\ &f_{c\perp} = \frac{P}{A} = \frac{1820}{5.25} = 347 \; \text{psi} < 405 \; \text{psi} \; (F_{c\perp}) \\ &OK \\ &\left[f_{c\perp} = \frac{8.09 \times 10^6}{3382} = 2392 \; \text{kPa} < 2792 \; \text{kPa} \; (f_{c\perp}) \right] \end{split}$$

Final Design

- Decking: nominal1-in. (25-mm) lumber
- Joists: 2 x 8's (50 x 200-mm) at 24-in. (610mm) spacing
- Stringers: 4 x 8's (100 x 200-mm) at 84-in.
 (2.13-m) spacing
- Shore: 4000-lb (17.8-kN) commercial shores at 48-in. (1.22-m) intervals