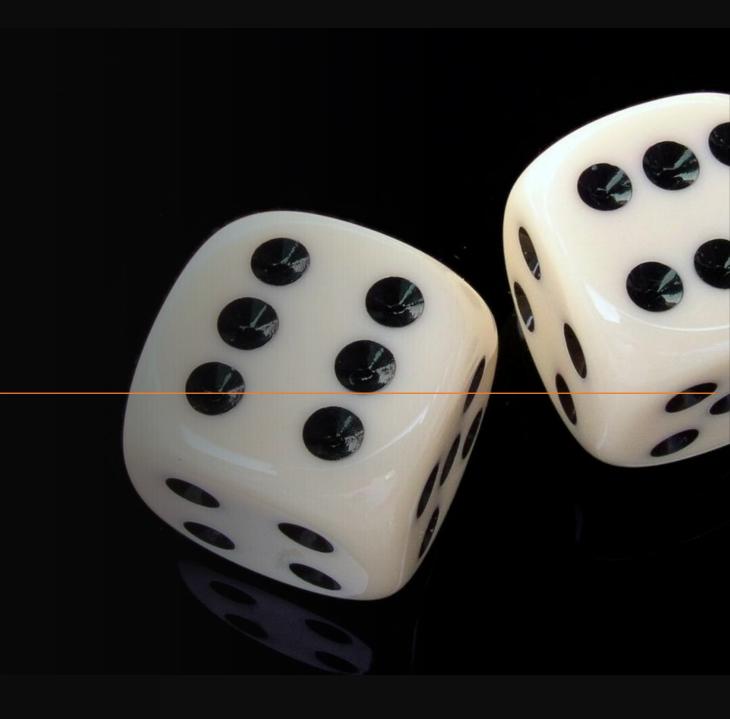
Chapter 17

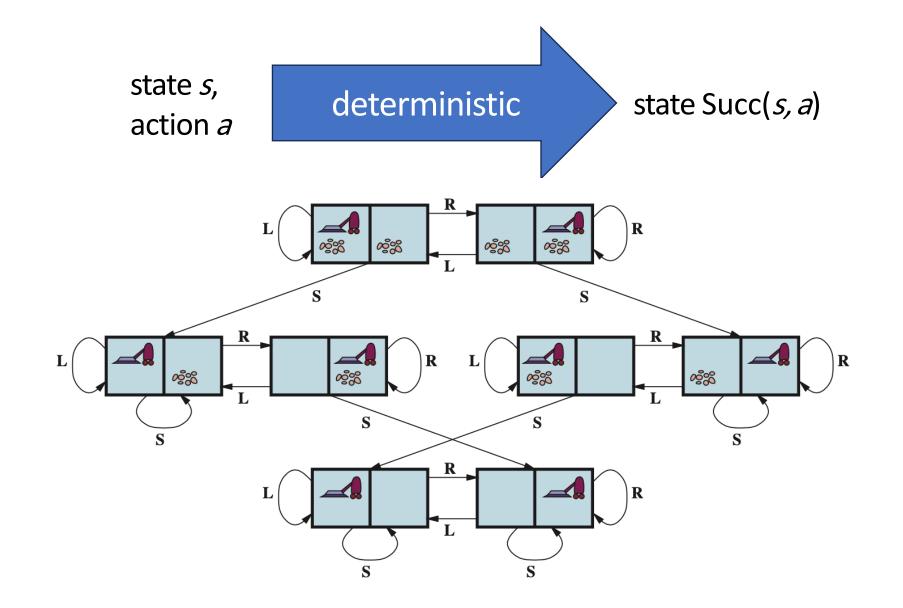
Markov Decision Process



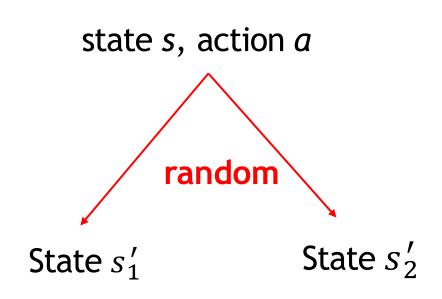
Question

- How would you get groceries in the least amount of time?
- 1. order grocery delivery
- 2. walk to the store
- 3. bike to the store
- 4. drive to the store
- 5. fly to the store

So far: search problems



Uncertainty in the real world



Taking an action might lead to any one of many possible states!

History

- MDPs: Mathematical Model for decision making under uncertainty, first introduced in 1950s-60s.
- The term Markov refers to Andrey Markov as MDPs are extensions of Markov Chains, and they allow making decisions (taking actions or having choice).

Applications

- Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.
- Resource allocation: decide what to produce, don't know the customer demand for various products
- Agriculture: decide what to plant, but don't know weather and thus crop yield

Markov Decision Process

An MDP can be represented as a graph:

- \bullet The nodes represent states ${\mathcal S}$
- A finite set of actions \mathcal{A} to take when in a state: the edges represent possible actions to take when in that state
- The state transition matrix $\mathcal{P}(s, a, s')$: defines transition probabilities from all states s to all successor states s'
- The reward function $\mathcal{R}(s, a, s')$ gives the rewards for moving from one state to the next
- A discount factor γ in the range $0 \le \gamma \le 1$

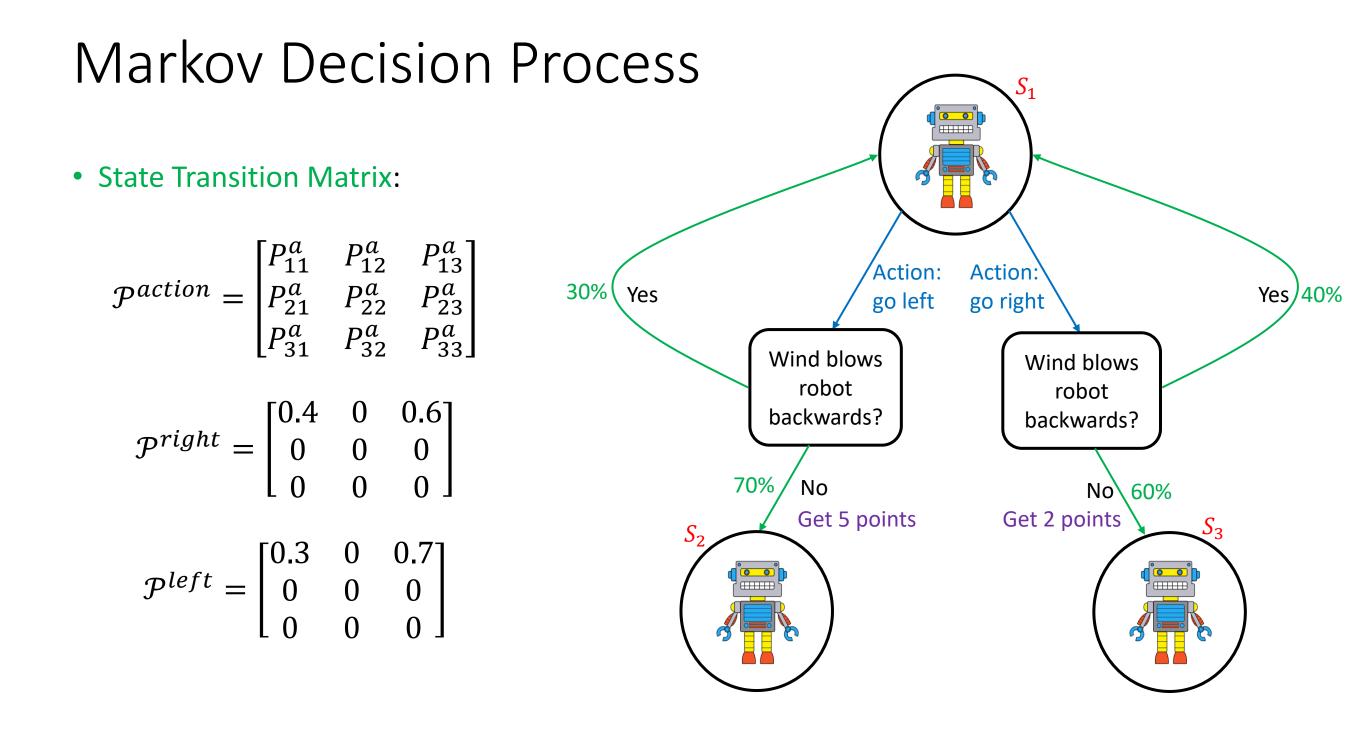
Markov Property

• A state *s*_t is Markov if and only if:

$$P[s_{t+1}|s_t] = P[s_{t+1}|s_1, \dots, s_t]$$

- The future is independent of the past, given the present
- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away, i.e. state is a sufficient statistic of the future

Markov Decision Process • **States**: *s*₁, *s*₂, *s*₃ • Actions: go left or go right Action: Action: • Rewards: 30% Yes Yes/40% go left go right 1. 5 points for going to s_2 Wind blows Wind blows 2. 2 points for going to s_3 robot robot backwards? backwards? 70% No No 60% Get 5 points Get 2 points S_3 Sa



Example: Dice Game

For each round r = 1, 2, ...

- You choose either to stay or quit
- 1. Quit: get 10 points and end the game.
- 2. Stay: get 4 points and then roll the dice:
 - a) If the dice is 1 or 2, end the game.
 - b) Otherwise, get 4 points, continue to the next round.

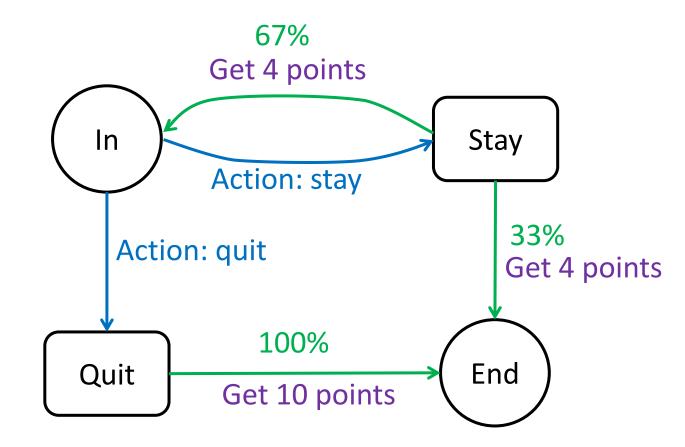
Question: how do you get the maximum points in this game?

Question: how do you get the maximum points in this game?

- States: In, End
- Actions: stay, quit
- Rewards:
 - 1. 4 points for stay
 - 2. 10 points for quit
- State Transition Matrix:

$$\mathcal{P}^{stay} = \begin{bmatrix} 0.67 & 0.33\\ 0 & 0 \end{bmatrix}$$

$$\mathcal{P}^{quit} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ deterministic}$$



Search vs MDPs

1. The successor function Succ(s, a) is a special case of state transition probability matrix:

$$\mathcal{P}(s, a, s') = \begin{cases} 1 & if \ s' = Succ(s, a) \\ 0 & otherwise \end{cases}$$

- 2. Another difference is that instead of minimizing costs (search), MDPs maximize rewards
- 3. In search, the solution is a path. In MDPs, it is a policy π that maps each state $s \in S$ to an action $a \in A$
 - Policy should maximize the total rewards
 - $\pi(a|s) = P[A_t = a|S_t = s]$

Evaluating a policy

 The total rewards is called the utility (AKA Return G_t) of a policy: the (discounted) sum of the rewards on the path (this is a random variable, so can't be maximized)

Path	Utility
[in; stay, 4, end]	4
[in; stay, 4, in; stay, 4, in; stay, 4, end]	12
[in; stay, 4, in; stay, 4, end]	8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]	16
•••	
(action, reward, new state)	

 Value (expected return): The value of a policy at a state is the expected return

Return

- Path: s_0 , $a_1r_1s_1$, $a_2r_2s_2$, ...
 - Sometimes written as $s_1a_1r_2$, $s_2a_2r_3$, ...
- Discount factor: reduces future rewards:
 - a reward today might be worth more than the same reward tomorrow
- $\gamma = 1$ (save for the future): [*stay*, *stay*, *stay*, *stay*]: 4 + 4 + 4 + 4 = 16
- $\gamma = 0$ (live in the moment):

 $[stay, stay, stay, stay]: 4 + 0 \cdot (4 + \cdots) = 4$

• $\gamma = 0.5$ (balanced life):

$$[stay, stay, stay, stay]: \left(\frac{1}{2}\right)^{0} \cdot 4 + \left(\frac{1}{2}\right)^{1} \cdot 4 + \left(\frac{1}{2}\right)^{2} \cdot 4 + \left(\frac{1}{2}\right)^{3} \cdot 4 = 7.5$$

Value and Q-Value

Value of a policy

• The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = E_{\pi}[G_t \mid S_t = s]$$

Q-value of a policy

• The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

Value and Q-Value

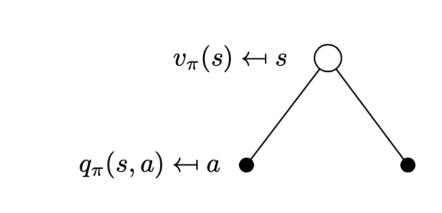
• The state-value function: immediate reward plus discounted value of successor state:

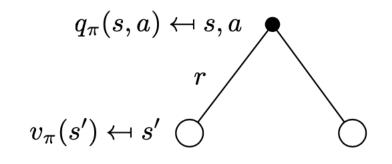
$$v_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

• The action-value function: immediate reward plus discounted value of successor state:

$$q_{\pi}(s,a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})|S_t = s, A_t = a]$$

Bellman Expectation Equation

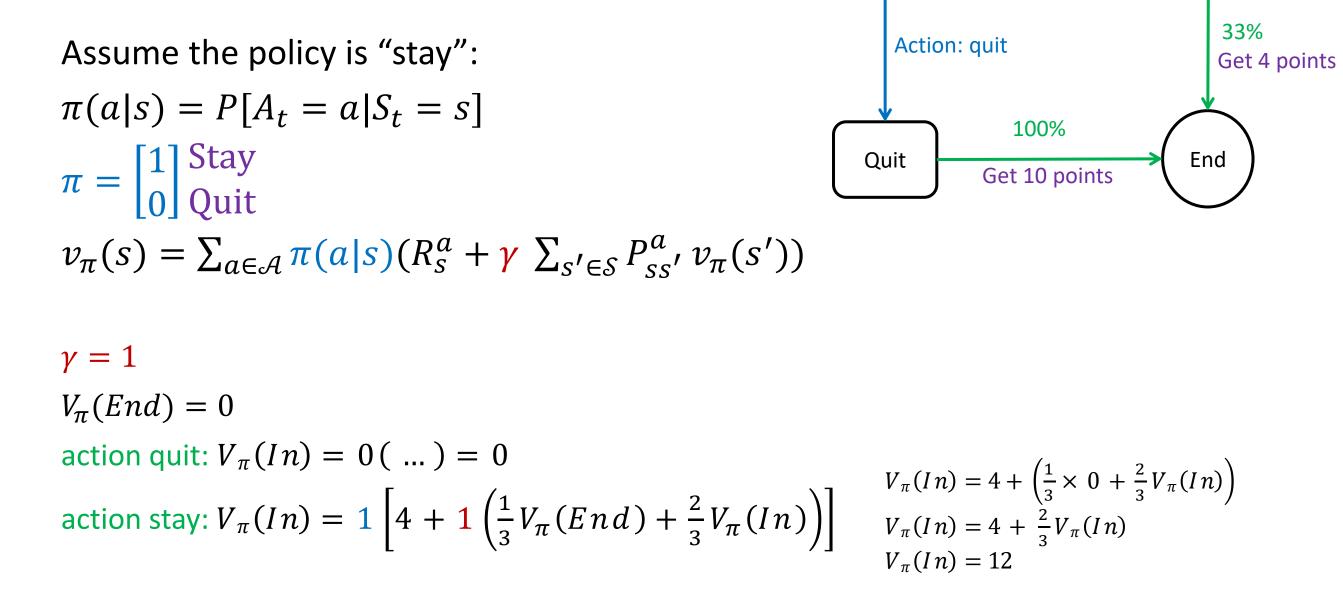




 $v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$ $q_{\pi}(s,a) = \mathcal{R}^{a}_{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} v_{\pi}(s')$

 $v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) (R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{\pi}(s'))$

Example: Dice Game



67%

Get 4 points

Action: stay

Stay

In

Policy evaluation

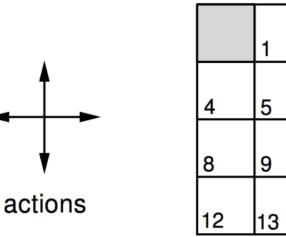
• The previous solution isn't always possible, so we use an algorithm called iterative policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states sFor iteration t = 1, ..., T

For each state s:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) (R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s'))$$

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Environment is deterministic
- Agent follows uniform random policy $\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$



2

6

110

14

3

11

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)(R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s'))$$

 v_k for the random policy

greedy policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$\longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow $	random
$\longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow $	policy
$\longleftrightarrow \longleftrightarrow \longleftrightarrow $	

$$k = 1$$

k = 2

k = 0

0.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	0.0	

	↓	\Leftrightarrow	\Leftrightarrow
1	$\stackrel{\bullet}{\longleftrightarrow}$	÷	\Leftrightarrow
${\longleftrightarrow}$	\Leftrightarrow	\Leftrightarrow	ţ
\Leftrightarrow	\Leftrightarrow	\rightarrow	

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←	←	${\longleftrightarrow}$
1	Ţ	\Leftrightarrow	Ļ
1	${\longleftrightarrow}$, ↓	↓
${\longleftrightarrow}$	\uparrow	\uparrow	

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)(R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s'))$$

 v_k for the random policy

greedy policy w.r.t. v_k

A A

⊢→|← **|→**

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

▲

_ random
policy

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0|-2.0|-2.0|-1.7

-2.0 -2.0 -1.7 0.0

	Ļ	\Leftrightarrow	\Leftrightarrow
1	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
${\longleftrightarrow}$	\Leftrightarrow	$\stackrel{\bullet}{\longleftrightarrow}$	÷
${\longleftrightarrow}$	\Leftrightarrow	\rightarrow	

 \rightarrow

Action: north / south / east / west $\pi(a|s) = 0.25$ $R_s^a = -1$ $\gamma = 1$ $v_{k=0} = 0$

So, for each action: =0.25[-1+(1)(0)] =-0.25

Then sum:

Total = -1

$$k = 0$$

k = 1

k = 2

k = 3

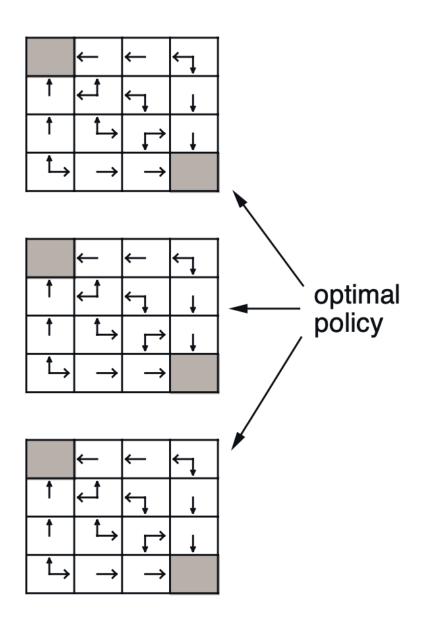
k = 10

 $k = \infty$

-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0
0.0	-6.1	-84	-0 0
0.0	-6.1	-8.4	-9.0
0.0 -6.1		-8.4 -8.4	
	-7.7		-8.4

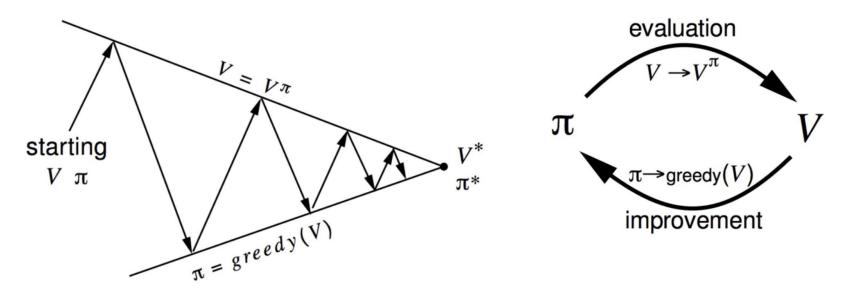
0.0 -2.4 -2.9 -3.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



How to Improve a Policy

• The policy is improved using Policy Iteration



- Policy evaluation: Estimate v_{π} using Iterative policy evaluation
- Policy improvement: Generate $\pi' \ge \pi$ using Greedy policy improvement