Chapter 17

Markov Decision Process

Question

* How would you get groceries in the least amount of time?
order grocery delivery

walk to the store

bike to the store

drive to the store

A A

fly to the store

So far:

search problems

state s,

. deterministic state Succ(s, a)
action a

Uncertainty in the real world

state s, action a

random

State s State s,

Taking an action might lead to any one of many possible states!

History

 MDPs: Mathematical Model for decision making under uncertainty,
first introduced in 1950s-60s.

* The term Markov refers to Andrey Markov as MDPs are extensions of
Markov Chains, and they allow making decisions (taking actions or
having choice).

Applications

* Robotics: decide where to move, but actuators can fail, hit unseen
obstacles, etc.

* Resource allocation: decide what to produce, don’t know the
customer demand for various products

* Agriculture: decide what to plant, but don’t know weather and thus
crop yield

Markov Decision Process

An MDP can be represented as a graph:
* The nodes represent states &

* A finite set of actions A to take when in a state: the edges represent
possible actions to take when in that state

* The state transition matrix P(s, a, s"): defines transition probabilities
from all states s to all successor states s’

* The reward function R(s, a, s’) gives the rewards for moving from
one state to the next

c A yintherange0 <y <1

Markov Property
* A state s; is Markov if and only if:
Pls¢r1lse]l = Plsg41ls1, - Sel

* The future is independent of the past, given the present
* The state captures all relevant information from the history

* Once the state is known, the history may be thrown away, i.e. state is
a sufficient statistic of the future

Markov Decision Process

* States: s4, Sy, S3
* Actions: go left or go right

Action: Action:

go left go right Yes)40%

e Rewards: 30%

- : 4 N 4 N

1. 5 points for going to s, Wind blows Wind blows

2. 2 points for going to s; robot robot
backwards?) backwards?

70%

,
No No\ 60%
Get 5 points Get 2 points S,

Markov Decision Process

e State Transition Matrix:

04 0 06
Pt =10 0 0
0 0 O

"pa a a]
P11 P12 P13

action _ a a a
P — P21 P22 P23

a a a
P31 P32 P33

|

30%

go left

-

~N

Wind blows
robot

backwards?

70%

No
Get 5 points

Action:

Action:
go right

Yes /40%

Wind blows
robot
backwards?

~N

,
N&O%
Get 2 points S,

Example: Dice Game

Foreachroundr =1, 2,...
* You choose either to stay or quit
1. Quit: get 10 points and end the game.

2. Stay: get 4 points and then roll the dice:

a) Ifthediceis 1 or 2, end the game.
b) Otherwise, get 4 points, continue to the next round.

Question: how do you get the maximum points in this game?

|\/| D P Question: how do you get the maximum points in this game?

()

e States: In, End 67%
Get 4 points
* Actions: stay, quit Vs
In ~_
Rewards: Action: stay
1. 4 points for stay
2. 10 points for quit Action: quit
* State Transition Matrix: !
pstay — [O.67 0.33] Quit) 100% |
0 0 J Get 10 points

0

quit _—
P=,

] deterministic

33%
Get 4 points

Search vs MDPs

1. The successor function Succ(s, a) is a special case of state
transition probability matrix:

P(s,a,s’) = {

2. Another difference is that instead of minimizing costs (search),
MDPs maximize rewards

1 if s'" = Succ(s,a)
0 otherwise

3. Insearch, the solution is a path. In MDPs, it is a policy T that maps
each state s € S toan actiona € A

* Policy should maximize the total rewards
* t(als) = P[A; = a|S; = s]

Evaluating a policy

* The total rewards is called the utility (AKA Return () of a policy: the
(discounted) sum of the rewards on the path (this is a random
variable, so can’t be maximized)

L T

[in; stay, 4, end] 4
[in; stay, 4, in; stay, 4, in; stay, 4, end] 12
[in; stay, 4, in; stay, 4, end] 8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 16

(action, reward, new state)

* Value (expected return): The value of a policy at a state is the
expected return

Return

* Path: sy, a 7151, a;1,5,
* Sometimes written as s{a.1,, S,a,73
e Discount factor: reduces future rewards:
e areward today might be worth more than the same reward tomorrow

* ¥ = 1 (save for the future):
|stay, stay, stay,stay]: 4 + 4 + 4 + 4 = 16

* ¥ = 0 (live in the moment):
|stay, stay, stay,stay]: 4 + 0 - 4 +---) = 4

* ¥ = 0.5 (balanced life):

0 1 2 3
1 1 1 1
|stay, stay, stay, stay]: 5] 4 + 5] 4 + 7] 4 + 5] 4 =175

Value and Q-Value

Value of a policy

* The state-value function v (s) of an MDP is the expected return starting
from state s, and then following policy

Un(s) = ExlGe | S¢ = 5]

Q-value of a policy

* The action-value function g, (s, a) is the expected return starting from state
s, taking action a, and then following policy

qr(s,a) = E; |G |S¢ =s,A; = a]

Value and Q-Value

* The state-value function: immediate reward plus discounted value of
successor state:

Vr(S) = Ex |Res1 + ¥V Vr(Ser)ISe = s]

* The action-value function: immediate reward plus discounted value of
successor state:

qr(s,a) = Ex|Res1 +V Qn(Se41, Ar+1) 1S = 5, A¢ = a

Bellman Expectation Equation

v (s) 7\ 2x (s, 0) ‘7\)
4x(s,0a) < a v (') i &
vr(s) = > m(als)gx(s, a) gr(s,3) =RZ+v Y Pava(s)

acA s’'eS

Un(S) — Zaecﬂ n(a|s)(R§" Ty ZS’ES PSC;’ UTL'(S,))

67%
Get 4 points

Example: Dice Game @(S ser |
Action: stay

o o 33%
Assume the policy is “stay”: Action: quit Get 4 points

n(als) = P|A; = a|S; = 5] [j 100%
T = [1] Sta_y Quit Get 10 points @
0] Quit

Vr($) = Xaeam(als)(RE + v Xgres Pogr vr(sh))

y=1
V.(End) =0

ti it:V,(In)=0(..)=20
action qui (In) () V.(n) =4+ (%x 0+ %Vn(ln))
action stay: V,(In) = 1 [4 + 1 (%V,T (End) + %Vn (In))] V.(In) =4 + %Vn(ln)

V.(In) =12

Policy evaluation

* The previous solution isn’t always possible, so we use an algorithm
called iterative policy evaluation

Initialize V,T(O) (s) < O for all states s
For iterationt =1, ..., T
For each state s:

Vk+1(8) = Xaeam(als)(Rs +v Xgres PSaS' vk (s"))

Students

Gridworld Example —l—

actions

* Undiscounted episodic MDP (y = 1)

* Nonterminal states 1, ..., 14

* One terminal state (shown twice as shaded squares)
* Actions leading out of the grid leave state unchanged
* Reward is —1 until the terminal state is reached

* Environment is deterministic

* Agent follows uniform random policy
n(n|-) = n(e|l-) = n(s|) = n(w|-) = 0.25

10

11

12

13

14

Students

Viera(5) =) m(@ls)RE+7) P v(s")

acA s’'es
Vi, for the greedy policy
random policy w.r.t. Vg
0.0/ 0.0{ 0.0] 0.0 |l
0.0/ 0.0| 0.0} 0.0 N i random
k:O Y A Y - I-
0.0] 0.0] 0.0] 0.0 Tl policy
0.0} 0.0} 0.0] 0.0 PPl
0.0(-1.0{-1.0[-1.0 — |l
T Fy b b
-1.0|-1.0{-1.0|-1.0 Pl
k=1 —
-1.0|-1.0[-1.0|-1.0 Pl
-1.0]-1.0[-1.0 0.0 “Polp| -
0.0|-1.7[-2.0|-2.0 — = |
_ -1.7-2.0-2.0[-2.0 M bl
k=2 :
-2.0|-2.0(-2.0|-1.7 | Pl
-2.0|-2.0[-1.7| 0.0 | - -

Students

Viera(5) =) m(@ls)RE+7) P v(s")

acA s’'es
Vi, for the greedy policy
random policy w.r.t. Vg
0.0/ 0.0{ 0.0] 0.0 |l
0.0/ 0.0| 0.0} 0.0 N i random
k = O . ' Y . F Y . b , -‘ Ii
0.0/ 0.0{ 0.0] 0.0 Tl POIiCy
0.0} 0.0} 0.0] 0.0 PPl
— Action: north / south / east / west
0.0]-1.0{-1.0-1.0 < PP | #(als) = 0.25
k1 -1.0|-1.0/(1.0]-1.0 L o o R S
-1.0[-1.0/-1.0[-1.0 g S U e I y =1
-1.0/-1.0]-1.0] 0.0 T Vi=o = 0
— - L So, for each action:
0.01-1.7-2.01-2.9 1 =0.25[-1+(1)(0)] =-0.25
_ -1.7|-2.0|-2.0[-2.0 T
k=2 ;
2.0[-2.0|-2.0-1.7 Pl Pl 4| | Then sum:
-2.0/-2.0]-1.7] 0.0 T 2 Total = -1

Students

Gridworld Example

0.0|-2.4|-2.9/-3.0 — = |9

fe 3 2.4|-2.9|-3.0|-2.9 : g1,
-2.9(-3.0[-2.9]-2.4 Ll
:3.0[-2.9|-2.4 0.0 L -] -
0.0]-6.1|-8.4|-9.0 — = |9

k=10 6.1|-7.7|-8.4|-8.4 I optimal
-8.4|-8.4|-7.7|-6.1 "I el policy
-9.0[-8.4|-6.1] 0.0 Ll - -
0.0|-14.|-20.|-22. — = |9

b= o0 -14.]-18.]-20.]-20 : <—TL)<—; |
-20.|-20.|-18.|-14. |
22.-20.|-14.| 0.0 L - -

Students

How to Improve a Policy

* The policy is improved using Policy lteration

evaluation
/—:N
JU
starting v* V
Vn - ni—>greedy(V')
improvement

* Policy evaluation: Estimate v,; using lterative policy evaluation
* Policy improvement: Generate ' = 1 using Greedy policy improvement

	Slide 1: Chapter 17
	Slide 2: Question
	Slide 3: So far: search problems
	Slide 4: Uncertainty in the real world
	Slide 5: History
	Slide 6: Applications
	Slide 7: Markov Decision Process
	Slide 8: Markov Property
	Slide 9: Markov Decision Process
	Slide 10: Markov Decision Process
	Slide 11: Example: Dice Game
	Slide 12: MDP
	Slide 13: Search vs MDPs
	Slide 14: Evaluating a policy
	Slide 15: Return
	Slide 16: Value and Q-Value
	Slide 17: Value and Q-Value
	Slide 18: Bellman Expectation Equation
	Slide 19: Example: Dice Game
	Slide 20: Policy evaluation
	Slide 21: Gridworld Example
	Slide 22: Gridworld Example
	Slide 23: Gridworld Example
	Slide 24: Gridworld Example
	Slide 25: How to Improve a Policy

