
Chapter 17

Markov Decision Process

Question

• How would you get groceries in the least amount of time?

1. order grocery delivery

2. walk to the store

3. bike to the store

4. drive to the store

5. fly to the store

So far: search problems

state s,
action a

state Succ(s,a)deterministic

Uncertainty in the real world

state s, action a

random

State 𝑠1
′ State 𝑠2

′

Taking an action might lead to any one of many possible states!

History

• MDPs: Mathematical Model for decision making under uncertainty,
first introduced in 1950s-60s.

• The term Markov refers to Andrey Markov as MDPs are extensions of
Markov Chains, and they allow making decisions (taking actions or
having choice).

Applications

• Robotics: decide where to move, but actuators can fail, hit unseen
obstacles, etc.

• Resource allocation: decide what to produce, don’t know the
customer demand for various products

• Agriculture: decide what to plant, but don’t know weather and thus
crop yield

Markov Decision Process

An MDP can be represented as a graph:

• The nodes represent states 𝒮

• A finite set of actions 𝒜 to take when in a state: the edges represent
possible actions to take when in that state

• The state transition matrix 𝒫(𝑠, 𝑎, 𝑠′): defines transition probabilities
from all states 𝑠 to all successor states 𝑠′

• The reward function ℛ(𝑠, 𝑎, 𝑠′) gives the rewards for moving from
one state to the next

• A discount factor 𝛾 in the range 0 ≤ 𝛾 ≤ 1

Markov Property

• A state 𝑠𝑡 is Markov if and only if:

𝑃[𝑠𝑡+1|𝑠𝑡] = 𝑃[𝑠𝑡+1|𝑠1, … , 𝑠𝑡]

• The future is independent of the past, given the present

• The state captures all relevant information from the history

• Once the state is known, the history may be thrown away, i.e. state is
a sufficient statistic of the future

Markov Decision Process

• States: 𝑠1, 𝑠2, 𝑠3

• Actions: go left or go right

• Rewards:
1. 5 points for going to 𝑠2

2. 2 points for going to 𝑠3

𝑆1

Action:
go right

Action:
go left

Wind blows
robot

backwards?

Wind blows
robot

backwards?

Yes Yes

𝑆2

No No

𝑆3

30% 40%

70% 60%
Get 5 points Get 2 points

Markov Decision Process

• State Transition Matrix:

𝒫𝑎𝑐𝑡𝑖𝑜𝑛 =

𝑃11
𝑎 𝑃12

𝑎 𝑃13
𝑎

𝑃21
𝑎 𝑃22

𝑎 𝑃23
𝑎

𝑃31
𝑎 𝑃32

𝑎 𝑃33
𝑎

𝒫𝑟𝑖𝑔ℎ𝑡 =
0.4 0 0.6
0 0 0
0 0 0

𝒫𝑙𝑒𝑓𝑡 =
0.3 0 0.7
0 0 0
0 0 0

𝑆1

Action:
go right

Action:
go left

Wind blows
robot

backwards?

Wind blows
robot

backwards?

Yes Yes

𝑆2

No No

𝑆3

30% 40%

70% 60%
Get 5 points Get 2 points

Example: Dice Game

For each round 𝑟 = 1, 2, . . .

• You choose either to stay or quit

1. Quit: get 10 points and end the game.

2. Stay: get 4 points and then roll the dice:
a) If the dice is 1 or 2, end the game.

b) Otherwise, get 4 points, continue to the next round.

Question: how do you get the maximum points in this game?

MDP

• States: 𝐼𝑛, 𝐸𝑛𝑑

• Actions: stay, quit

• Rewards:
1. 4 points for stay

2. 10 points for quit

• State Transition Matrix:

𝒫𝑠𝑡𝑎𝑦 =
0.67 0.33

0 0

𝒫𝑞𝑢𝑖𝑡 =
0 1
0 0

In Stay

Quit End

Action: stay

Action: quit 33%
Get 4 points

Get 10 points

100%

67%
Get 4 points

Question: how do you get the maximum points in this game?

deterministic

Search vs MDPs

1. The successor function 𝑆𝑢𝑐𝑐(𝑠, 𝑎) is a special case of state
transition probability matrix:

𝒫(𝑠, 𝑎, 𝑠′) = ቊ
1 𝑖𝑓 𝑠′ = 𝑆𝑢𝑐𝑐(𝑠, 𝑎)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2. Another difference is that instead of minimizing costs (search),
MDPs maximize rewards

3. In search, the solution is a path. In MDPs, it is a policy 𝜋 that maps
each state 𝑠 ∈ 𝒮 to an action 𝑎 ∈ 𝒜
• Policy should maximize the total rewards

• 𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

Evaluating a policy

• The total rewards is called the utility (AKA Return 𝐺𝑡) of a policy: the
(discounted) sum of the rewards on the path (this is a random
variable, so can’t be maximized)

• Value (expected return): The value of a policy at a state is the
expected return

Path Utility

[in; stay, 4, end] 4

[in; stay, 4, in; stay, 4, in; stay, 4, end] 12

[in; stay, 4, in; stay, 4, end] 8

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 16

… …

(action, reward, new state)

Return

• Path: 𝑠0, 𝑎1𝑟1𝑠1, 𝑎2𝑟2𝑠2, …
• Sometimes written as 𝑠1𝑎1𝑟2, 𝑠2𝑎2𝑟3, …

• Discount factor: reduces future rewards:
• a reward today might be worth more than the same reward tomorrow

• 𝛾 = 1 (save for the future):
[𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦]: 4 + 4 + 4 + 4 = 16

• 𝛾 = 0 (live in the moment):
[𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦]: 4 + 0 · (4 + · · ·) = 4

• 𝛾 = 0.5 (balanced life):

𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦, 𝑠𝑡𝑎𝑦 :
1

2

0

· 4 +
1

2

1

· 4 +
1

2

2

· 4 +
1

2

3

· 4 = 7.5

Value and Q-Value

Value of a policy

• The state-value function 𝑣𝜋(𝑠) of an MDP is the expected return starting

from state 𝑠, and then following policy 𝜋

𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠]

Q-value of a policy

• The action-value function 𝑞𝜋(𝑠, 𝑎) is the expected return starting from state

𝑠, taking action 𝑎, and then following policy 𝜋

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎]

Value and Q-Value

• The state-value function: immediate reward plus discounted value of
successor state:

𝑣𝜋(𝑠) = 𝐸𝜋 𝑅𝑡+1 + 𝛾 𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠]

• The action-value function: immediate reward plus discounted value of
successor state:

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡+1 + 𝛾 𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

Bellman Expectation Equation

𝑣𝜋(𝑠) = σ𝑎∈𝒜 𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 σ𝑠′∈𝒮 𝑃𝑠𝑠′

𝑎 𝑣𝜋(𝑠′))

Example: Dice Game

Assume the policy is “stay”:

𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

𝜋 =
1
0

Stay
Quit

𝑣𝜋(𝑠) = σ𝑎∈𝒜 𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 σ𝑠′∈𝒮 𝑃𝑠𝑠′

𝑎 𝑣𝜋(𝑠′))

𝛾 = 1

𝑉𝜋(𝐸𝑛𝑑) = 0

action quit: 𝑉𝜋 𝐼𝑛 = 0 … = 0

action stay: 𝑉𝜋 𝐼𝑛 = 1 4 + 1
1

3
𝑉𝜋 𝐸𝑛𝑑 +

2

3
𝑉𝜋 𝐼𝑛

In Stay

Quit End

Action: stay

Action: quit
33%
Get 4 points

Get 10 points

100%

67%

Get 4 points

𝑉𝜋 𝐼 𝑛 = 4 +
1

3
× 0 +

2

3
𝑉𝜋 𝐼 𝑛

𝑉𝜋 𝐼 𝑛 = 4 +
2

3
𝑉𝜋 𝐼 𝑛

𝑉𝜋 𝐼 𝑛 = 12

Policy evaluation

• The previous solution isn’t always possible, so we use an algorithm
called iterative policy evaluation

Initialize 𝑉𝜋
0

(𝑠) ← 0 for all states 𝑠

For iteration 𝑡 = 1, … , 𝑇

 For each state 𝑠:

 𝑣𝑘+1(𝑠) = σ𝑎∈𝒜 𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 σ𝑠′∈𝒮 𝑃𝑠𝑠′

𝑎 𝑣𝑘(𝑠′))

Gridworld Example

• Undiscounted episodic MDP (𝛾 = 1)

• Nonterminal states 1, ..., 14

• One terminal state (shown twice as shaded squares)

• Actions leading out of the grid leave state unchanged

• Reward is −1 until the terminal state is reached

• Environment is deterministic

• Agent follows uniform random policy
𝜋(𝑛| ·) = 𝜋(𝑒| ·) = 𝜋(𝑠| ·) = 𝜋(𝑤| ·) = 0.25

Students

Gridworld Example

Students
𝑣𝑘+1(𝑠) = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣𝑘(𝑠′))

Gridworld Example

Students

Action: north / south / east / west
𝜋 𝑎 𝑠 = 0.25
𝑅𝑠

𝑎 = −1
𝛾 = 1
v𝑘=0 = 0

So, for each action:
=0.25[-1+(1)(0)] =-0.25

Then sum:
Total = -1

𝑣𝑘+1(𝑠) = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣𝑘(𝑠′))

Gridworld Example

Students

How to Improve a Policy

• The policy is improved using Policy Iteration

• Policy evaluation: Estimate 𝑣𝜋 using Iterative policy evaluation

• Policy improvement: Generate 𝜋′ ≥ 𝜋 using Greedy policy improvement

Students

	Slide 1: Chapter 17
	Slide 2: Question
	Slide 3: So far: search problems
	Slide 4: Uncertainty in the real world
	Slide 5: History
	Slide 6: Applications
	Slide 7: Markov Decision Process
	Slide 8: Markov Property
	Slide 9: Markov Decision Process
	Slide 10: Markov Decision Process
	Slide 11: Example: Dice Game
	Slide 12: MDP
	Slide 13: Search vs MDPs
	Slide 14: Evaluating a policy
	Slide 15: Return
	Slide 16: Value and Q-Value
	Slide 17: Value and Q-Value
	Slide 18: Bellman Expectation Equation
	Slide 19: Example: Dice Game
	Slide 20: Policy evaluation
	Slide 21: Gridworld Example
	Slide 22: Gridworld Example
	Slide 23: Gridworld Example
	Slide 24: Gridworld Example
	Slide 25: How to Improve a Policy

