Lecture 3.1: Algebra of matrix

Basic definitions of matrices are given in Lecture 1.

3.1.1 Properties of a matrix

1. Transpose of a Matrix: A transpose of a matrix is obtained by interchanging rows and corresponding columns of the given matrix. The transpose of the matrix A is denoted A^{t}.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Properties of the Transpose of a matrix

1. $\left(A^{t}\right)^{t}=A$
2. $(\mathrm{AB})^{\mathrm{t}}=\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}$
3. $(k A)^{t}=k A^{t}$, where k is a scalar.
4. $(A+B)^{t}=A^{t}+B^{t}$

2. Symmetric Matrix:

A square matrix is symmetric if $A^{t}=A$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=\mathrm{A}
$$

3. Skew - symmetric Matrix :

A square matrix is skew symmetric if $\mathrm{A}^{\mathrm{t}}=-\mathrm{A}$.

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -4 \\
3 & 4 & 0
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 4 \\
-3 & -4 & 0
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=-A .
$$

4. Equality of matrix:

Two matrices are equal, if these of same size and corresponding entries are equal.

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
$$

A and B are equal matrices when these of the same size and corresponding entries are equal.

Example:1. Write down the system of equation, if matrices A and B are equal

$$
\mathrm{A}=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right]
$$

Solution: A and B are of the same size, hence

$$
\begin{aligned}
& \mathrm{A}=\mathrm{B} \Rightarrow \\
& x-2=1 \\
& y-3=3+z \\
& x+y=z \\
& z+3=y
\end{aligned}
$$

System of equations are

$$
\begin{aligned}
x & =3 \\
y-z & =6 \\
x+y-z & =0 \\
-y+z & =-3
\end{aligned}
$$

3.1.2 Addition of matrices:

Matrices of the equal size can be added entry wise.

Example:2. Add the following matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 4
\end{array}\right]+\left[\begin{array}{lll}
4 & 2 & 8 \\
2 & 4 & 1
\end{array}\right]
$$

Solution. We need to add the pairs of entries, and then simplify for the final answer:

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 4
\end{array}\right]+\left[\begin{array}{lll}
4 & 2 & 8 \\
2 & 4 & 1
\end{array}\right]=\left[\begin{array}{lll}
1+4 & 0+2 & 2+8 \\
3+2 & 5+4 & 4+1
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & 10 \\
5 & 9 & 5
\end{array}\right]
$$

So the answer is:

$$
\left[\begin{array}{ccc}
5 & 2 & 10 \\
5 & 9 & 5
\end{array}\right]
$$

Example:3. Find the value of x and y in the following matrix equation

$$
\left[\begin{array}{cc}
5 & \mathrm{x} \\
3 \mathrm{y} & 2
\end{array}\right]+\left[\begin{array}{ll}
-3 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 7
\end{array}\right]
$$

Solution. Using concept of addition of matrices, we simplify left hand side

$$
\left[\begin{array}{cc}
5-3 & x+2 \\
3 y-1 & 2+5
\end{array}\right]=\left[\begin{array}{cc}
2 & x+2 \\
3 y-1 & 7
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 7
\end{array}\right]
$$

Two matrices are equal when their correspoding entries are equal

$$
\begin{aligned}
& x+2=4 \\
& 2 y-1=5
\end{aligned}
$$

Solving these equations

$$
\begin{aligned}
& x=4-2=2 \\
& 3 y=5+1 \\
& 3 y=6, \quad y=2
\end{aligned}
$$

Solution of matrix equation is $\mathrm{x}=2, \mathrm{y}=2$.

3.1.3 Scalar Multiplication:

If a matrix is multiplied by a scalar α, then each entry is multiplied by scalar α.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad 2 \mathrm{~A}=2\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad 2 \mathrm{~A}=\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 2 & 0 \\
2 & 2 & 4
\end{array}\right] \\
& 3 A=\left[\begin{array}{lll}
3 & 6 & 9 \\
6 & 3 & 0 \\
3 & 3 & 6
\end{array}\right]
\end{aligned}
$$

3.1.4 Matrix Multiplication:

The product of two matrices A and B is possible if the number of columns of A is equal to number of rows in B , the method is being explained by following example:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right]_{2 \times 3}, \quad B=\left[\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right]_{3 \times 4} \\
& \text { A } \mathrm{x} \quad \mathrm{~B}=\mathrm{C} \\
& 2 \times 3 \quad 3 \times 4 \quad 2 \times 4 \\
& A B=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right] \\
& \mathrm{c}_{11}=1 \mathrm{x} 4+2 \mathrm{x} 0+4 \mathrm{x} 2=4+0+8=12 \\
& \mathrm{c}_{12}=1 \mathrm{x} 1+2 \mathrm{x}(-1)+4 \mathrm{x} 7=1-2+28=27 \\
& \mathrm{c}_{13}=1 \times 4+2 \times 3+4 \times 5=4+6+20=30 \\
& \mathrm{c}_{14}=1 \mathrm{x} 3+2 \mathrm{x} 1+4 \mathrm{x} 2=3+2+8=13 \\
& \mathrm{c}_{21}=2 \mathrm{x} 4+6 \times 0+0 \times 2=8+0+0=8 \\
& \mathrm{c}_{22}=2 \mathrm{x} 1+6 \mathrm{x}(-1)+0 \times 7=2-6+0=-4 \\
& c_{23}=2 \times 4+6 \times 3+0 \times 5=8+18+0=26 \\
& c_{24}=2 \times 3+6 \times 1+0 \times 2=6+6+0=12 \\
& \mathrm{AB}=\left[\begin{array}{cccc}
12 & 27 & 30 & 13 \\
8 & -4 & 26 & 12
\end{array}\right]
\end{aligned}
$$

NOTE: $A B \neq B A$

Lecture 3.2 : Inverse of matrix and power of matrix

3.2.1 Inverse of a 2×2 matrix

Consider a 2x2 matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
If $\mathrm{ad}-\mathrm{bc} \neq 0$, then $\mathrm{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Note: Multiple $(a d-b c)$ is called the determinant of matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Example: Find inverse of matrix $A=\left[\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right]$

$$
\begin{aligned}
& \mathrm{ad}-\mathrm{bc}=3 \times 5-2 \times 4=15-8=7 \\
& \mathrm{~A}^{-1}=\frac{1}{7}\left[\begin{array}{cc}
5 & -2 \\
-4 & 3
\end{array}\right] .
\end{aligned}
$$

Properties of Inverse

1. $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{A} \mathrm{A}^{-1}=\mathrm{I}$
2. If A and B are invertible matrices of the same size , then $A B$ is also invertible and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}
$$

3.2.2 Power of a matrix

1. $\quad A^{0}=I$
2. $\quad A^{n}=A . A . A . . . A \quad(n-f a c t o r s)$, where $\mathrm{n}>0$.
3. $A^{-n}=\left(A^{-1}\right)^{n}=A^{-1} \cdot A^{-1} \cdot A^{-1} \ldots \cdot \mathrm{~A}^{-1} \quad(\mathrm{n}$ - factors), where $\mathrm{n}>0$.
4. $A^{r} A^{s}=A^{r+s}$
5. $\quad\left(\mathrm{A}^{\mathrm{r}}\right)^{s}=\mathrm{A}^{15}$
6. $\left(A^{-1}\right)^{-1}=A$
7. $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}, \quad \mathrm{n}=0,1,2, \ldots$
8. $(k A)^{-1}=\frac{1}{k} A^{-1}$, where k is a scalar.

Example:4. Let A be an invertible matrix and suppose that inverse of 7A is

$$
\left[\begin{array}{cc}
-2 & 7 \\
1 & -3
\end{array}\right], \text { find matrix A }
$$

Solution: $(7 \mathrm{~A})^{-1}=\frac{1}{7} A^{-1}=\left[\begin{array}{cc}-2 & 7 \\ 1 & -3\end{array}\right]$

$$
\begin{aligned}
& A^{-1}=7\left[\begin{array}{cc}
-2 & 7 \\
1 & -3
\end{array}\right]=\left[\begin{array}{cc}
-14 & 49 \\
7 & -21
\end{array}\right] \\
& A=\left(A^{-1}\right)^{-1}=-\frac{1}{49}\left[\begin{array}{cc}
-21 & -49 \\
-7 & -14
\end{array}\right]=\frac{7}{49}\left[\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Example:5. Let A be a matrix $\left[\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right]$ compute $\mathrm{A}^{3}, \mathrm{~A}^{-3}, \mathrm{~A}^{2}-2 \mathrm{~A}+\mathrm{I}$.
Solution:

$$
\begin{gathered}
A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3}=A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3}=\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right] \\
A^{2}-2 A+I=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
8 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
4 & 0
\end{array}\right]
\end{gathered}
$$

Example:6. Find inverse of the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Solution:

$$
\begin{gathered}
\mathrm{ad}-\mathrm{bc}=\cos ^{2} \theta+\sin ^{2} \theta=1, \\
A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
A^{-1}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{gathered}
$$

Lecture 3.3 Inverse by Elementary Matrix

3.3.1 Elementary Matrix

An nxn matrix is called elementary matrix, if it can be obtained from nxn identity matrix by performing a single elementary row operation.

Examples: $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is a 3×3 identity matrix.
Elementary matrices $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} can be obtained by single row operation.

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]-3 R_{3} \\
& E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -2
\end{array}\right]-2 R_{3}+R_{2} \\
& E_{3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}
\end{aligned}
$$

NOTE:

When a matrix A is multiplied from the left by an elementary matrices E, the effect is same as to perform an elementary row operation on A .

Example: 1.

$$
\text { Let } A \text { be a } 3 \times 4 \text { matrix, } A=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right] \text { and }
$$

E be 3×3 elementary matrix obtained by row operation $3 R_{1}+R_{3}$ from an Identity matrix

$$
\mathrm{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

$$
\mathrm{EA}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
4 & 4 & 10 & 9
\end{array}\right], 3 \mathrm{R}_{1}+\mathrm{R}_{3} .
$$

3.3.2 Method for finding Inverse of a matrix

To find the inverse of an invertible matrix, we must find a sequence of elementary row operations that reduces A to the identity and then perform this same sequence of operations on I_{n} to obtain A^{-1}.

$$
[\mathrm{A} \mid \mathrm{I}] \text { to }\left\lfloor\mathrm{I} \mid \mathrm{A}^{-1}\right\rfloor
$$

Example:2. Find inverse of a matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method.

Solution:

$$
\begin{aligned}
{[A \mid I] } & =\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{cc|c}
1 & 4 & 1 \\
0 & 0 \\
0 & -1 & -2 \\
\hline
\end{array}\right]-2 R_{1}+R_{2} \\
& \approx\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]-\mathrm{R}_{2} \\
& \approx\left[\begin{array}{cc|c}
1 & 0 & -7 \\
0 & 1 & 4 \\
0 & -1
\end{array}\right]-4 \mathrm{R}_{2}+\mathrm{R}_{1} \\
& =\left[I \mid A^{-1}\right]
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{cc}
-7 & 4 \\
2 & -1
\end{array}\right]
$$

Example:3. Use Elementary matrix method to find inverses of

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right] \quad \text { if } \mathrm{A} \text { is invertible. }
$$

Solution:

$$
\begin{aligned}
& {[A \mid I] }=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right]-3 R_{1}+R_{2},-2 R_{1}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 1 & 0 & -1 & -2 & 1
\end{array}\right]-R_{2}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & -1 & \frac{1}{2} & \frac{-7}{10} & \frac{-2}{5}
\end{array}\right] \quad R_{2} \leftrightarrow R_{3}, \frac{\left(-4 R_{3}+R_{2}\right)}{10} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{2} & \frac{-11}{10} & \frac{-6}{5} \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & \frac{-1}{2} & \frac{7}{10} & \frac{2}{5}
\end{array}\right]-3 R_{3}+R_{1},--R_{3} \\
& \approx\left[\begin{array}{lll}
I \mid A^{-1}
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cccc}
\frac{3}{2} & \frac{-11}{10} & \frac{-6}{5} \\
-1 & 1 & 1 \\
\frac{-1}{2} & \frac{7}{10} & \frac{2}{5}
\end{array}\right] .
\end{aligned}
$$

Lecture 4.1: Solving Linear system by Inverse Matrix

Let a given linear system of equations is

$$
\mathrm{AX}=\mathrm{B}
$$

Find A^{-1}
Multiply with A^{-1} from left

$$
\begin{aligned}
\mathrm{A}^{-1} \mathrm{AX} & =\mathrm{A}^{-1} \mathrm{~B} \\
\mathrm{IX} & =\mathrm{A}^{-1} \mathrm{~B} \\
\mathrm{X} & =\mathrm{A}^{-1} \mathrm{~B} \text { is a solution. }
\end{aligned}
$$

Note: To find A^{-1} we use Elementary Matrix method.

Example1.

Write the system of equations in a matrix form, find A^{-1}, use A^{-1} to solve the system

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =4 \\
2 x_{1}+2 x_{2}+x_{3} & =-1 \\
2 x_{1}+3 x_{2}+x_{3} & =3
\end{aligned}
$$

Solution: 1. Matrix Form is:

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right] \quad \text { is in form of } \mathrm{AX}=\mathrm{B}
$$

2. Find A^{-1} by using Elementary Matrix method

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & \mathrm{O} & 1 & \mathrm{O} \\
2 & 3 & 1 & \mathrm{O} & \mathrm{O} & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \approx\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right] \quad \mathrm{R}_{2}-2 R_{1}, R_{3}-2 R_{1} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \quad 4 R_{3}-3 R_{2} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & -4 & 0 & 0 & 4 & -4 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \quad R_{1}+R_{2}, R_{2}-R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \quad-\frac{1}{4} R_{2},-R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \quad-\frac{1}{4} R_{2},-R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \quad-3 R_{2}+R_{3} \\
& \equiv\left[I \mid A^{-1}\right] \\
& A^{-1}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right] \\
& X=A^{-1} B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
-7
\end{array}\right]
\end{aligned}
$$

Solution set is $x_{1}=-1, x_{2}=4, x_{3}=-7$.

Lecture 4.2 Determinant

4.1 Determinant of a matrix

The determinant is a useful value that can be computed from the elements of a square matrix. The determinant of a matrix A is $\operatorname{denoted} \operatorname{det}(A), \operatorname{det} A$, or $|A|$.

4.2 Evaluation of determinant of Matrix

1.The determinant of a (1×1) matrix $A=[a]$ is just $\operatorname{det} A=a$.
2. The determinant of 2×2 matrix is defined as

$$
A=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

$$
|\mathrm{A}|=\operatorname{det} \mathrm{A}=\operatorname{det}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\mathrm{ad}-\mathrm{cb}
$$

Example:1. Find determinant of matrix

$$
A=\left[\begin{array}{ll}
4 & 5 \\
3 & 6
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
4 & 5 \\
3 & 6
\end{array}\right] \\
\operatorname{det} A & =4 \times 6-3 \times 5 \\
& =24-15 \\
& =9
\end{aligned}
$$

4.3 The determinant of 3×3 matrix is defined as

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& \operatorname{det} A=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Example:2. Find determinant of matrix

$$
A=\left[\begin{array}{lll}
2 & 4 & 5 \\
3 & 6 & 8 \\
4 & 5 & 9
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& \text { Expanding along the top row and noting alternating signs }\left|\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right| \\
& \qquad \begin{aligned}
\operatorname{det} A & =+2 \times\left|\begin{array}{ll}
6 & 8 \\
5 & 9
\end{array}\right|-4 \times\left|\begin{array}{ll}
3 & 8 \\
4 & 9
\end{array}\right|+5 \times\left|\begin{array}{cc}
3 & 6 \\
4 & 5
\end{array}\right| \\
& =2 \times(54-40)-4 \times(27-32)+5 \times(15-24) \\
& =2 \times(14)-4 \times(-5)+5 \times(-9) \\
& =28+20-45=48-45=3
\end{aligned}
\end{aligned}
$$

Note: we can write determinant of a matrix as

$$
\operatorname{det}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \text { or }\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right| \text { or } \operatorname{det} \mathrm{A} \text { or }|\mathrm{A}|
$$

Example:3.

Find the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.

Solution:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
\operatorname{det} A & =\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=+1 \times\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-2 \times\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3 \times\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right| \\
& =1(45-48)-2(36-42)+3(32-35)=-3+12-9=0
\end{aligned}
$$

Example4. Find determinant of matrix of order 4×4

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 5 \\
2 & -1 & 2 & 3 \\
3 & 2 & 1 & 5 \\
1 & 0 & 4 & 0
\end{array}\right]
$$

Solution:

Two entries in 4th row are zero, so determinant is calculated by opening from $4^{\text {th }}$ row.

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =\mathrm{a}_{41} \mathrm{c}_{41}+\mathrm{a}_{42} \mathrm{c}_{42}+\mathrm{a}_{43} \mathrm{c}_{43}+\mathrm{a}_{41} \mathrm{c}_{44} \\
& =(1) \mathrm{c}_{41}+(0) \mathrm{c}_{42}+(4) \mathrm{c}_{43}+(0) \mathrm{c}_{44} \\
& =\mathrm{c}_{41}+(4) \mathrm{c}_{43}
\end{aligned}
$$

$$
\operatorname{det} A=c_{41}+(4) c_{43}=-\left|\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 2 & 3 \\
2 & 1 & 5
\end{array}\right|-4\left|\begin{array}{ccc}
0 & 1 & 5 \\
2 & -1 & 2 \\
3 & 2 & 1
\end{array}\right|
$$

Finding values of cofactors c_{41} and c_{43}

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =-(4)-4(34) \\
& =-4-136 \\
& =-140
\end{aligned}
$$

Example:5.

Solving matrix equation
Find all values of λ for which $\operatorname{det}(\mathrm{A})=0$ for matrix

$$
A=\left[\begin{array}{ccc}
\lambda-4 & 0 & 0 \\
0 & \lambda & 2 \\
0 & 3 & \lambda-1
\end{array}\right]
$$

Solution: Two entries of $1^{\text {st }}$ row are zero, we open it from first row

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =(\lambda-4)\left|\begin{array}{cc}
\lambda & 2 \\
3 & \lambda-1
\end{array}\right| \\
& =(\lambda-4)[\lambda(\lambda-1)-6] \\
& =(\lambda-4)\left[\lambda^{2}-\lambda-6\right] \\
& =(\lambda-4)(\lambda-3)(\lambda+2)
\end{aligned}
$$

We need to find the value of λ, when $\operatorname{det} A=0$

$$
\begin{aligned}
& \Rightarrow(\lambda-4)(\lambda-3)(\lambda+2)=0 \\
& \Rightarrow \lambda=4, \lambda=3 \text { and } \lambda=-2 \text {. }
\end{aligned}
$$

Lecture 4.3: Determinant of triangular matrices

Upper triangular matrix

In upper triangular matrix all the entries below the diagonal are zero.

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right]
$$

Lower triangular matrix

In lower triangular matrix all the entries above the diagonal are zero.

$$
B=\left[\begin{array}{lll}
1 & 0 & 0 \\
8 & 4 & 0 \\
4 & 7 & 3
\end{array}\right]
$$

Note: Determinant of triangular matrix is product of diagonal elements.
Det $\mathrm{A}=(1)(4)(5)=20$
Det $\mathrm{B}=(1)(4)(3)=12$
Example:6. The determinant of Triangular matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & 4 & 5 & 3 \\
0 & 5 & 3 & -1 \\
0 & 0 & 3 & 9 \\
0 & 0 & 0 & 4
\end{array}\right] \\
& \operatorname{det} A=(2)(4)(5)(3)=120
\end{aligned}
$$

Diagonal Matrices

Diagonal matrix is matrix whose off diagonal elements are zero.

Example:7. Determinant of Diagonal matrix

Find determinant of matrix $B=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$

Solution:

$$
\operatorname{det} B=(5)(4)(3)=60
$$

Example:8.

$$
\text { Evaluate } \operatorname{det} C=\left|\begin{array}{rrrrr}
3 & 0 & 0 & 0 & 0 \\
-4 & 2 & 0 & 0 & 0 \\
67 & e & 4 & 0 & 0 \\
0 & 1 & -47 & 2 & 0 \\
\pi & -3 & 6 & -\sqrt{2} & -1
\end{array}\right|
$$

Matrix C is lower triangular $\Rightarrow \operatorname{det} C=3 \times 2 \times 4 \times 2 \times(-1)=-48$

Example:9.

$$
\text { Evaluate } \operatorname{det} D=\left|\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
-3 & 2 & -4 & -3 \\
4 & 2 & 7 & 4 \\
2 & 3 & 11 & 2
\end{array}\right|
$$

Columns 1 and 4 of matrix D are identical $\Rightarrow \operatorname{det} D=0$.

Lecture 5.1 Properties of Determinant

Property 1: If one row of a matrix consists entirely of zeros, then the determinant is zero.
Example1: $\quad \mathrm{A}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 4 & 8\end{array}\right], \quad \operatorname{det} \mathrm{A}=0$,

Property 2: If two rows of a matrix are identical, the determinant is zero.
Example2: $\quad \mathrm{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 4 & 8\end{array}\right], \quad \operatorname{det} \mathrm{A}=0$, Row 1 and Row 2 are identical
Property 3: If in a square matrix A two rows proportional, then $\operatorname{det} \mathrm{A}=0$.
Example3: $\quad A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 6\end{array}\right], \quad \operatorname{det}(A)=0$.

Row 1 and Row 3 are proportional, as $\mathrm{R}_{3}=2 \mathrm{R}_{1}$

Property 3: $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{\mathrm{T}}\right)$.

Example4:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right], \quad \operatorname{det} A=2, \quad A^{t}=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 4 \\
3 & 2 & 8
\end{array}\right], \quad \operatorname{det}\left(A^{t}\right)=2
$$

Property 4: For an $n \times n$ matrix \mathbf{A} and any scalar $\lambda, \operatorname{det}(\lambda \mathbf{A})=\lambda^{n} \operatorname{det}(\mathbf{A})$.

Note:

When we multiply a matrix with a number, each entry of matrix is multiplied with the same number.

When we take common from determinant, it is taken from each row or each column.

Example5:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right], \quad 4 \mathrm{~A}=\left[\begin{array}{ccc}
4 & 8 & 9 \\
0 & 4 & 8 \\
8 & 16 & 32
\end{array}\right], \\
& \operatorname{det}(4 \mathrm{~A})=\left|\begin{array}{ccc}
4 & 8 & 9 \\
0 & 4 & 8 \\
8 & 16 & 32
\end{array}\right|=(4)(4)(4)\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right|=4^{3}\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right|=64 \times 2=128
\end{aligned}
$$

Property 5: If A and B are of the same order, then $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
Property 6: If A and B are of the same order, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
Property 7: $\operatorname{det}\left(\mathbf{A}^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
Property 8: If $\operatorname{det}(\mathbf{A})=0$, then matrix A is singular matrix
Property 9: Homogeneous system of linear equations $A X=0$, will have non- trivial solution if and only if $\operatorname{det} \mathrm{A}=0$.

Example6. Given that
Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(A)=-7$, find
(a) $\operatorname{det}(3 \mathrm{~A})$,
(b) $\operatorname{det}(2 \mathrm{~A})^{-1}$,
(c) $\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)$,
(d) $\operatorname{det} A^{T}=\operatorname{det} A$,
(e) $\left|\begin{array}{ccc}a & g & d \\ b & h & e \\ c & i & f\end{array}\right|$

Solution:

(a) $\operatorname{det}(3 \mathrm{~A})=3^{3} \operatorname{det} \mathrm{~A}=(27)(-7)=-189$
(b) $\operatorname{det}(2 A)^{-1}=\frac{1}{\operatorname{det}(2 A)}=\frac{1}{2^{3} \operatorname{det} A}=\frac{1}{(8)(-7)}=-\frac{1}{56}$
(c) $\operatorname{det}\left(2 A^{-1}\right)=2^{3} \operatorname{det}\left(A^{-1}\right)=\frac{8}{\operatorname{det} A}=\frac{8}{-7}=-\frac{8}{7}$
(d) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)=-7$

Example7. Use row reduction to show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2}
\end{array}\right|=(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})
$$

Solution:

Using property that $\operatorname{det} \mathbf{A}^{\mathbf{t}}=\operatorname{det} \mathrm{A}$

$$
\left.\begin{array}{rl}
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right| & =(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 1 & c+a
\end{array}\right| \\
R_{2}-R_{1}, R_{3}-R_{1} & \text { taking common from } \mathbf{R}_{2} \text { and } \mathbf{R}_{3} \\
& =(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & c-b
\end{array}\right| \text { It is triangular matrix } \\
R_{3}-R_{2}
\end{array}\right] .
$$

Example 8. Using properties of determinants show that

$$
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
a & b & c \\
1 & 1 & 1
\end{array}\right|=0
$$

Solution:

$$
\begin{aligned}
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
a & b & c \\
1 & 1 & 1
\end{array}\right| & =\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \begin{array}{|cc|}
R_{1}+R_{2} \\
\hline
\end{array} \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \quad \text { Taking common from } R_{1} \\
& =0 .
\end{aligned}
$$

Lecture 5.2 Elementary Row operations and Determinant

Let A and B be square matrices

1. If B is obtained by interchanging two rows of A,

$$
\text { then } \operatorname{det} B=-\operatorname{det} A
$$

2. If B is obtained by multiplying row of A by a nonzero constant k, then $\operatorname{det} B=k \operatorname{det} A$
3. If B is obtained from A by adding a multiple of a row A to another row of A, \quad then $\operatorname{det} B=\operatorname{det} A$

Example 9.

Find determinant of Matrix by using elementary row operations

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right]
$$

Solution:

Reducing to triangular matrix, multiply row 1 by (-2) and add to row 3

$$
\operatorname{det} \mathrm{A}=\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right|=(1)(1)(2)=2
$$

Example10.

Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 8\end{array}\right]$ and $\operatorname{det} \mathrm{A}=2$. Find determinant of matrix
(i) $\mathrm{A}_{1}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 8 \\ 0 & 1 & 2\end{array}\right]$,
(ii) $\mathrm{A}_{2}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$,
(iii) $A_{3}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$

Solution:
(i) The matrix A_{1} can be obtained by interchanging Row 2 and Row 3 of matrix A

$$
\operatorname{det} \mathrm{A}_{1}=-\operatorname{det} \mathrm{A}=-2
$$

(ii) The matrix A_{2} can be obtained by multiplying Row 3 of matrix A by $1 / 2$

$$
\operatorname{det} A_{2}=1 / 2 \operatorname{det} A=1 / 2(2)=1
$$

(iii) The matrix A_{3} can be obtained by Row operation on matrix A (-2 Row 1 to Row 3) $\operatorname{det} \mathrm{A}_{3}=\operatorname{det} \mathrm{A}=2$

Example11. Given that

$$
\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=6, \operatorname{find}(a)\left|\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right| \text {, (b) }\left|\begin{array}{ccc}
3 \mathrm{a} & 3 b & 3 c \\
-d & -e & -f \\
4 g & 4 h & 4 i
\end{array}\right| \text {, (c) }\left|\begin{array}{ccc}
a+g & b+h & c+i \\
d & e & f \\
g & h & i
\end{array}\right|
$$

Solution:

(b) $\left|\begin{array}{ccc}3 \mathrm{a} & 3 \mathrm{~b} & 3 \mathrm{c} \\ -\mathrm{d} & -\mathrm{e} & -\mathrm{f} \\ 4 \mathrm{~g} & 4 \mathrm{~h} & 4 \mathrm{i}\end{array}\right|=(3)(-1)(4)\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}\right|=(-12)(6)=-72$
(c) $\left|\begin{array}{ccc}a+g & b+h & c+i \\ d & e & f \\ g & h & i\end{array}\right|=\left|\begin{array}{ccc}R_{1}-R_{3} \\ d & b & c \\ d & h & i\end{array}\right|=6$

Lecture 5.3: Evaluation of Determinant

Finding determinant by using Properties of determinant

Example 12. Given that

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(A)=-7$, find
(a) $\operatorname{det}(3 \mathrm{~A}),($ b $) \operatorname{det}(2 \mathrm{~A})^{-1}$, (c) $\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)$, (d) $\operatorname{det} \mathrm{A}^{T}=\operatorname{det} \mathrm{A}$, (e) $\left|\begin{array}{lll}a & g & d \\ b & h & e \\ c & i & f\end{array}\right|$

Solution:
(a) $\operatorname{det}(3 \mathrm{~A})=3^{3} \operatorname{det} \mathrm{~A}=(27)(-7)=-189$
(b) $\operatorname{det}(2 A)^{-1}=\frac{1}{\operatorname{det}(2 A)}=\frac{1}{2^{3} \operatorname{det} A}=\frac{1}{(8)(-7)}=-\frac{1}{56}$
(c) $\operatorname{det}\left(2 A^{-1}\right)=2^{3} \operatorname{det}\left(A^{-1}\right)=\frac{8}{\operatorname{det} A}=\frac{8}{-7}=-\frac{8}{7}$
(d) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)=-7$
(e) $\begin{aligned}\left|\begin{array}{lll}\mathrm{a} & \mathrm{g} & \mathrm{d} \\ \mathrm{b} & \mathrm{h} & \mathrm{e} \\ \mathrm{c} & \mathrm{i} & \mathrm{f}\end{array}\right|=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{g} & \mathrm{h} & \mathrm{i} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right|= & -\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}\right|=-(-7)=7 \\ & \text { Taking Transpose } \quad \text { Interchanging } \mathrm{R}_{2} \text { and } \mathrm{R}_{3}\end{aligned}$

Finding determinant by using Elementary row operations
Example12.
Use row reduction to show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2}
\end{array}\right|=(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})
$$

Solution:

Using property that $\operatorname{det} \mathrm{A}^{\mathrm{t}}=\operatorname{det} \mathrm{A}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{~b} & \mathrm{~b}^{2} \\
1 & \mathrm{c} & \mathrm{c}^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{a}^{2} \\
0 & \mathrm{~b}-\mathrm{a} & \mathrm{~b}^{2}-\mathrm{a}^{2} \\
0 & \mathrm{c}-\mathrm{a} & \mathrm{c}^{2}-\mathrm{a}^{2}
\end{array}\right|=(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{a}^{2} \\
0 & 1 & \mathrm{~b}+\mathrm{a} \\
0 & 1 & \mathrm{c}+\mathrm{a}
\end{array}\right| \\
& \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3}-\mathrm{R}_{1} \quad \text { taking common from } \mathrm{R}_{2} \text { and } \mathrm{R}_{3} \\
& =(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & c-b
\end{array}\right| \text { It is triangular matrix } \\
& \mathrm{R}_{3}-\mathrm{R}_{2} \\
& =(b-a)(c-a)(c-b)
\end{aligned}
$$

Finding determinant by using Properties of determinant

Example13.

Using properties of determinants show that

$$
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
a & b & c \\
1 & 1 & 1
\end{array}\right|=0
$$

Solution:

$$
\begin{aligned}
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
a & b & c \\
1 & 1 & 1
\end{array}\right| & =\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \begin{array}{|cc|}
R_{1}+R_{2} \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \quad \text { Taking common from } R_{1} \\
& =0 .
\end{array} \quad R_{1} \text { and } R_{3} \text { are equal } \\
& =1
\end{aligned}
$$

Example14.

Find the values of x for which the matrix does not have inverse

$$
A=\left[\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
2 x+3 & 3 x+4 & 4 x+5 \\
3 x+5 & 5 x+8 & 10 x+17
\end{array}\right]
$$

Solution:

$$
\operatorname{det} A=\left|\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
2 x+3 & 3 x+4 & 4 x+5 \\
3 x+5 & 5 X+8 & 10 x+17
\end{array}\right|
$$

By the row operations $R_{3}-R_{2}$, and $R_{3}-R_{1}$

$$
=\left|\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
x+1 & x+1 & x+1 \\
x+2 & 2 x+4 & 6 x+12
\end{array}\right|
$$

Taking common $x+1$ from Row 1 and $x+2$ from Row 2

$$
=(x+1)(x+2)\left|\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
1 & 1 & 1 \\
1 & 2 & 6
\end{array}\right|
$$

By subtracting column 1 from column 2 and column 3
$=(x+1)(x+2)\left|\begin{array}{ccc}\mathrm{x}+2 & \mathrm{x}+1 & 2 \mathrm{x}+2 \\ 1 & 0 & 0 \\ 1 & 1 & 5\end{array}\right|$

Opening from Row2

$$
=(x+1)(x+2)(-3(x+1))
$$

$$
\operatorname{det} \mathrm{A}=0 \Rightarrow-3(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+1)=0
$$

is zero

$$
\Rightarrow \mathrm{x}=-1 \text { or } \mathrm{x}=-2
$$

Note: We can apply the operation in columns we perform operations on rows.

Example 15.

Use determinants to find which real value(s) of c make this matrix invertible:

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & -1 & c \\
2 & c & 1
\end{array}\right]
$$

Solution:

$A=\left|\begin{array}{rrr}1 & 2 & -1 \\ 0 & -1 & c \\ 2 & c & 1\end{array}\right|=0+(-1)\left|\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right|-c\left|\begin{array}{ll}1 & 2 \\ 2 & c\end{array}\right|$

$$
\begin{aligned}
&=-(1+2)-c(c-4)=-\left(c^{2}-4 c+3\right)=-(c-1)(c-3) \\
& \operatorname{det} A=0 \Rightarrow c=1 \text { or } c=3
\end{aligned}
$$

Therefore the matrix is invertible for all real values of c except $c=1$ or $c=3$.
Finding determinant by using Elementary row operations, reducing it to upper triangular matrix form

Example 16. Evaluate

$$
\operatorname{det} A=\left|\begin{array}{rrrr}
1 & -1 & 5 & 5 \\
3 & 1 & 2 & 4 \\
-1 & -3 & 8 & 0 \\
1 & 1 & 2 & -1
\end{array}\right|
$$

Solution: Use elementary row operations to carry the matrix to upper triangular form:

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
1 & -1 & 5 & 5 \\
3 & 1 & 2 & 4 \\
-1 & -3 & 8 & 0 \\
1 & 1 & 2 & -1
\end{array}\right| \xrightarrow[\substack{R_{3}+R_{1} \\
R_{4}-R_{1}}]{\substack{R_{2}-3 R_{1}}}\left|\begin{array}{rrrr}
1 & -1 & 5 & 5 \\
0 & 4 & -13 & -11 \\
0 & -4 & 13 & 5 \\
0 & 2 & -3 & -6
\end{array}\right| \\
& \underset{\substack{R_{3}+R_{2} \\
R_{4}-\frac{1}{2} R_{2}}}{ }\left|\begin{array}{rrrrr}
1 & -1 & 5 & 5 \\
0 & 4 & -13 & -11 \\
0 & 0 & 0 & -6 \\
0 & 0 & \frac{7}{2} & -\frac{1}{2}
\end{array}\right| \xrightarrow{\substack{R_{3} \leftrightarrow R_{4}}}\left|\begin{array}{rlrrr}
1 & -1 & 5 & 5 \\
0 & 4 & -13 & -11 \\
0 & 0 & \frac{7}{2} & -\frac{1}{2} \\
0 & 0 & 0 & -6
\end{array}\right| \\
& \Rightarrow \operatorname{det} A=-1 \times 4 \times \frac{7}{2} \times(-6)=+84 .
\end{aligned}
$$

Lecture 6.1 Applications of Determinants

Minors and cofactors of a Matrix

$$
\text { Let } \mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Definition 1:

Given a matrix A, the Minor of $a_{i j} \equiv M_{i j}$, is determinant obtained from A by removing $i^{\text {th }}$ row and $j^{\text {th }}$ column.

$$
\begin{aligned}
& \mathbf{M}_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \text { is determinant obtained by deleting 1st row and 1st column } \\
& M_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|, M_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|, M_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& M_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|, M_{22}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|, M_{23}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
& M_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|, M_{32}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|, M_{33}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{aligned}
$$

$$
\text { Cofactor of } a_{i j}=C_{i j}=(-1)^{i+j} M_{i j}
$$

Signs of Cofactors

For 2×2 - matrix $\left[\begin{array}{ll}+ & - \\ - & +\end{array}\right]$
For 3×3 - matrix $\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$
For 4×4 - matrix $\left[\begin{array}{llll}+ & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & +\end{array}\right]$

Definition 2:

Given a matrix \mathbf{A}, the cofactor of the element $\mathbf{a}_{\mathbf{i j}}$ is a scalar obtained by multiplying together the term ($\mathbf{(1)})^{i+j}$ and the minor obtained from \mathbf{A} by removing the $i^{\text {th }}$ row and the $j^{\text {th }}$ column.

Example:1.

Find all minors and cofactors of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& M_{11}=\left|\begin{array}{cc}
0 & 3 \\
5 & -4
\end{array}\right|=-15, \quad M_{12}=\left|\begin{array}{cc}
1 & 3 \\
2 & -4
\end{array}\right|=-10, \\
& M_{13}=\left|\begin{array}{cc}
1 & 0 \\
2 & -5
\end{array}\right|=5 \\
& M_{21}=\left|\begin{array}{ll}
4 & -1 \\
5 & -4
\end{array}\right|=-11, \\
& M_{22}=\left|\begin{array}{cc}
3 & -1 \\
2 & -4
\end{array}\right|=-10, \\
& M_{23}=\left|\begin{array}{ll}
3 & 4 \\
2 & 5
\end{array}\right|=7 \\
& M_{31}=\left|\begin{array}{cc}
4 & -1 \\
0 & 3
\end{array}\right|=12, \quad M_{32}=\left|\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right|=10, \quad M_{33}=\left|\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right|=-4
\end{aligned}
$$

$$
\text { Cofactor of } a_{i j}=C_{i j}=(-1)^{i+j} M_{i j}
$$

$$
\begin{array}{lll}
C_{11}=-15, & C_{12}=10, & C_{13}=5 \\
C_{21}=11, & C_{22}=-10, & C_{23}=-7 \\
C_{31}=12, & C_{32}=-10, & C_{33}=-4
\end{array}
$$

NOTE: Matrix of cofactors , $C=\left[\begin{array}{ccc}-15 & 10 & 5 \\ 11 & -10 & -7 \\ 12 & -10 & -4\end{array}\right]$
NOTE: Determinant of matrix of Cofactors by the method of cofactors

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
\operatorname{det}(A) & =a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23} \\
\operatorname{det}(A) & =a_{31} C_{31}+a_{32} C_{32}+a_{33} C_{33}
\end{aligned}
$$

The above equations can be used to check that the cofactors are found correctly as the values of determinants found must be equal, we open matrix from any row or column.

Example: 2 .

Find the determinant of the matrix A by method of cofactors,

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right]
$$

Solution:

Using the cofactors found in the last example.
Expanding from First row

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& =3(-15)+4(10)+(-1)(5) \\
& =-45+40-5=-10
\end{aligned}
$$

NOTE: 3. We can find determinant by opening matrix from second or third row or first column, the value of the determinant will be same

$$
\begin{aligned}
\operatorname{det}(A) & =a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23} \\
& =(1)(11)+0(-10)+3(-7)=11-21=-10 \\
\operatorname{det}(A) & =a_{31} C_{31}+a_{32} C_{32}+a_{33} C_{33} \\
& =2(12)+5(-10)+(-4)(-4)=24-50+16=-10
\end{aligned}
$$

NOTE : 4. Determinant of A can be obtained by multiplying any row or any column of matrix A with the corresponding cofactors of the matrix.

NOTE: 5. Determinant of matrix $\mathbf{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

$$
\operatorname{det} \mathbf{A}=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
$$

Lecture 6.2 : Inverse by method of Cofactors

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq \mathbf{0} .
$$

Step:1. Find Matrix of cofactors

$$
\mathbf{C}=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]
$$

Step : 2. Find Adjoint of matrix A, $\operatorname{adj}(A)$

$$
\operatorname{Adj}(\mathbf{A})=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]^{T}
$$

Step: 3.

$$
\begin{aligned}
& \text { If } \mathbf{A} \text { is an invertible matrix, } \operatorname{det}(\mathbf{A}) \\
& \qquad A^{-1}=\frac{1}{\operatorname{det} A}[\operatorname{adj}(A)]
\end{aligned}
$$

Example: 3. Find A^{-1} of matrix A

$$
A=\left[\begin{array}{ccc}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right] \text { by the method of cofactors. }
$$

Solution: Cofactors of the matrix A are

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{cc}
3 & 2 \\
0 & -4
\end{array}\right|=-12, C_{12}=-\left|\begin{array}{cc}
0 & 2 \\
-2 & -4
\end{array}\right|=-4, C_{13}=\left|\begin{array}{cc}
0 & 3 \\
-2 & 0
\end{array}\right|=6 \\
& C_{21}=-\left|\begin{array}{ll}
0 & 3 \\
0 & 4
\end{array}\right|=0, \quad C_{22}=\left|\begin{array}{cc}
2 & 3 \\
-2 & -4
\end{array}\right|=-2, C_{23}=-\left|\begin{array}{cc}
2 & 0 \\
-2 & 0
\end{array}\right|=0, \\
& C_{31}=\left|\begin{array}{ll}
0 & 3 \\
3 & 2
\end{array}\right|=-9, \quad C_{32}=-\left|\begin{array}{cc}
2 & 3 \\
0 & 2
\end{array}\right|=-4, \quad C_{33}=\left|\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right|=6
\end{aligned} \begin{array}{r}
\text { Matrix of cofactors, } \mathrm{C}=\left[\begin{array}{ccc}
-12 & -4 & 6 \\
0 & -2 & 0 \\
-9 & -4 & 6
\end{array}\right] \\
\begin{aligned}
\text { Adjoint of matrix } \mathrm{A}, \operatorname{adj}(\mathrm{~A})=\left[\begin{array}{ccc}
-12 & 0 & -9 \\
-4 & -2 & -4 \\
6 & 0 & 6
\end{array}\right] \\
\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
=2(-12)+0(-4)+3(6) \\
=-24+18=-6 \neq 0
\end{aligned}
\end{array}
$$

Inverse of the matrix A is

$$
A^{-1}=\frac{1}{\operatorname{det} A}[\operatorname{adj}(A)]=\frac{1}{-6}\left[\begin{array}{ccc}
-12 & 0 & -9 \\
-4 & -2 & -4 \\
6 & 0 & 6
\end{array}\right]
$$

NOTE :
If we can find A^{-1}, then solution of linear system
$A X=B$ is $\quad X=A^{-1} B$

Lecture 6.3 : Cramer's Rule

Using determinants to solve a system of linear equations.

Theorem:

If A is $n \times n$ matrix with $\operatorname{det}(A) \neq 0$, then the linear system $A X=B$ has a unique solution $X=\left(x_{j}\right)$ given by

$$
x_{j}=\frac{\operatorname{det}\left(A_{j}\right)}{\operatorname{det}(A)}, j=1,2, \ldots, n
$$

Where A_{j} is the matrix obtained by replacing the jth column of A by B.
NOTE: If A is $\mathbf{3 x} \mathbf{3}$ matrix , then the solution of the system $A X=B$ is

$$
\mathrm{x}=\frac{\operatorname{det}\left(\mathrm{A}_{1}\right)}{\operatorname{det}(\mathrm{A})}, \quad \mathrm{y}=\frac{\operatorname{det}\left(\mathrm{A}_{2}\right)}{\operatorname{det}(\mathrm{A})}, \quad \mathrm{z}=\frac{\operatorname{det}\left(\mathrm{A}_{3}\right)}{\operatorname{det}(\mathrm{A})}
$$

Example 4.

Use Cramer's Rule to solve

$$
\begin{array}{r}
4 x+5 y=2 \\
11 x+y+2 z=3 \\
x+5 y+2 z=1
\end{array}
$$

Solution:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
4 & 5 & 0 \\
11 & 1 & 2 \\
1 & 5 & 2
\end{array}\right], \quad \mathbf{A}_{\mathbf{1}}=\left[\begin{array}{lll}
2 & 5 & 0 \\
3 & 1 & 2 \\
1 & 5 & 2
\end{array}\right], \mathbf{A}_{\mathbf{2}}=\left[\begin{array}{ccc}
4 & 2 & 0 \\
11 & 3 & 2 \\
1 & 1 & 2
\end{array}\right], \mathbf{A}_{\mathbf{3}}=\left[\begin{array}{ccc}
4 & 5 & 2 \\
11 & 1 & 3 \\
1 & 5 & 1
\end{array}\right] \\
& \operatorname{det}(\mathbf{A})=\mathbf{- 1 3 2}, \quad \operatorname{det}\left(\mathbf{A}_{\mathbf{1}}\right)=\mathbf{- 3 6}, \quad \operatorname{det}\left(\mathbf{A}_{2}\right)=\mathbf{- 2 4}, \quad \operatorname{det}\left(\mathbf{A}_{\mathbf{3}}\right)=\mathbf{1 2} \\
& x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-36}{-132}=\frac{3}{11}, \\
& y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{-24}{-132}=\frac{2}{11}, \\
& z=\frac{\operatorname{det}\left(A_{31}\right)}{\operatorname{det}(A)}=\frac{12}{-132}=\frac{-1}{11}
\end{aligned}
$$

NOTE: If $\operatorname{det}(A)=0$, then there does not exist any solution of the system.

Example:3. Find determinant of matrix if $A=$ $\left[\begin{array}{cccc}1 & -4 & -5 \\ 0 & 1 & 2 & 5 \\ 2 & -1 & 2 & 3 \\ 3 & 2 & 1 & 5 \\ 1 & 0 & 4 & 0\end{array}\right]$

Solution: Expanding from $4^{\text {th }}$ row

Example: 4. Find all values of λ for which $\operatorname{det}(\mathrm{A})=0$ formatix which racaka

$$
A=\left[\begin{array}{ccc}
\lambda-4 & 0 & 0 \\
0 & \lambda & 2 \\
0 & 3 & \lambda-1
\end{array}\right]
$$

A without inverse A^{-1}

$$
\text { Solution: } \operatorname{det}(\mathrm{A})=(\lambda-4)\left|\begin{array}{cc}
\lambda & 2 \\
3 & \lambda-1
\end{array}\right|-(0)\left|\begin{array}{cc}
0 & 2 \\
0 & \lambda-1
\end{array}\right|+(0)\left|\begin{array}{cc}
0 & \lambda \\
0 & 3
\end{array}\right|
$$

$$
\begin{aligned}
= & (\lambda-4)[\lambda(\lambda-1)-6] \\
& =(\lambda-4)\left[\lambda^{2}-\lambda-6\right] \\
& =(\lambda-4)(\lambda-3)(\lambda+2) \\
\operatorname{det} & (A)=0 . \\
& (\lambda-4)(\lambda-3)(\lambda+2)=0 . \\
& \Rightarrow \lambda=4, \lambda=3, \lambda=-2 .
\end{aligned}
$$

How to find 3.4 Evaluating Determinant by row operations

$|A|$

through
row operations

1. If matrix A_{1} is obtained from matrix A by the interchange of two rows, then $\operatorname{det}\left(A_{1}\right)=-\operatorname{det}(A)$.
2. If matrix A_{2} is obtained from matrix A by the multiplication of a row of A by a constant k, then $\operatorname{det}\left(A_{2}\right)=k \operatorname{det}(A)$.
3. If matrix A_{j} is obtained from the matrix A by addition of a multiple of one row to another row, then $\operatorname{det}\left(A_{3}\right)=\operatorname{det}(A)$.

$$
\begin{aligned}
& \text { - } \operatorname{Det}(A)=-(1)\left|\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 2 & 3 \\
2 & 1 & 5
\end{array}\right|+(0)\left|\begin{array}{lll}
0 & 2 & 5 \\
2 & 2 & 3 \\
3 & 1 & 5
\end{array}\right|-(4)\left|\begin{array}{ccc}
0 & 1 & 5 \\
2 & -1 & 3 \\
3 & 2 & 5
\end{array}\right| \div(0)\left|\begin{array}{ccc}
0 & 1 & 2 \\
2 & -1 & 2 \\
3 & 2 & 1
\end{array}\right| \\
& =-(1)(4)+(0)(?)-(4)(34)+(0)(?) \\
& =-4-136=-140 \text {. }
\end{aligned}
$$

Example:5. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 8\end{array}\right]$, and $\operatorname{det}(A)=2$. Find determinant of

$$
\text { (i) } A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 8 \\
0 & 1 & 2
\end{array}\right] \text {, (ii) } A_{2}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 2 & 4
\end{array}\right] \text {, (iii) } A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Solution: (i) A_{1} is obtained from A by interchanging R_{2} and $R_{;}$of A,

$$
\operatorname{det}\left(A_{1}\right)=-\operatorname{det}(A)=-2 .
$$

(ii) A_{2} is obtained from A by multiplying R; of A by $\frac{1}{2}$,

$$
\operatorname{det}\left(A_{2}\right)=\frac{1}{2} \operatorname{det}(A)=\frac{1}{2}(2)=1 .
$$

(iii) A_{3} is obtained by row operation $-2 R_{2} \div R_{1}$,

$$
\operatorname{det}\left(A_{3}\right)=\operatorname{det}(A)=2
$$

NOTE:

$\underbrace{\text { Important }}$

1. If A is any square matrix that contains a row of zeros, then $\operatorname{det}(A)=0$.
2. If a square matrix has two proportional rows, then $\operatorname{det}(A)=0$.
3. In case of upper or lower triangular matrix, determinant is the product of the diagonal elements.

Upper triangular matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad \operatorname{det}(\mathrm{A})=a_{11} a_{22} a_{33}
$$

Lower triangular matrix

$$
\mathrm{B}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{12} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right], \quad \operatorname{det}(\mathrm{B})=a_{11} a_{22} a_{13}
$$

Example:6.

$$
\text { Given that }\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=6, \quad \text { find (a) }\left|\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right|,(b)\left|\begin{array}{ccc}
3 a & 3 b & 3 c \\
-d & -e & -f \\
4 g & 4 h & 4 i
\end{array}\right|
$$

$$
\text { (c) }\left|\begin{array}{ccc}
\mathrm{a}+\mathrm{g} & \mathrm{~b}+\mathrm{h} & \mathrm{c}+\mathrm{i} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right| \text {, (d) }\left|\begin{array}{ccc}
-3 a & -3 b & -3 c \\
d & e & f \\
g-4 d & h-4 e & i-4 f
\end{array}\right| .
$$

Solution:

$$
\begin{aligned}
& \text { (a) }\left|\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right|=-\left|\begin{array}{lll}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right|=(-1)(-1)\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=(-1)(-1)(6)=6 \\
& R_{1} \leftrightarrow R_{3} \quad R_{2} \leftrightarrow R_{3} \\
& \text { (b) }\left|\begin{array}{ccc}
3 a & 3 b & 3 c \\
-d & -e & -f \\
4 g & 4 h & 4 i
\end{array}\right|=(3)(-1)(4)\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=(-12)(6)=-72 \\
& \text { (c) }\left|\begin{array}{ccc}
a+g & b+h & c+i \\
d & e & f^{\prime} \\
g & h & i
\end{array}\right|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=6 \\
& \text { (d) }\left|\begin{array}{ccc}
-3 a & -3 b & -3 c \\
d & e & f \\
g-4 d & h-4 e & i-4 f
\end{array}\right|=(-3)\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=(-3)(6)=-18
\end{aligned}
$$

$$
\operatorname{Det} A=\left|\begin{array}{ccccc}
1 & 3 & 1 & 5 & 3 \\
-2 & -7 & 0 & -4 & 2 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right|
$$

Solution:

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccccc}
1 & 3 & 1 & 5 & 3 \\
0 & -1 & 2 & 6 & 8 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right| \quad 2 R_{1} \div R_{2},-2 R_{2}+R_{4} \\
& =\left|\begin{array}{ccccc}
1 & 3 & 1 & 5 & 3 \\
0 & -1 & 2 & 6 & 8 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right| \quad-R_{4} \div R_{5} \\
& =(1)(-1)(1)(1)(2)=-2
\end{aligned}
$$

Example:8. Find the values) of x if $\operatorname{det} A=-12$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & x-3 & -3 \\
1 & x-4 & 0
\end{array}\right]
$$

Solution: Performing row operations $-2 R_{1}+R_{2},-R_{1} \div R_{\text {; }}$

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-3 & -3 \\
0 & x-4 & 0
\end{array}\right|=(1)\left|\begin{array}{cc}
x-3 & -3 \\
x-4 & 0
\end{array}\right|-(0)+(0) \\
& =. j(x-4) \\
\operatorname{det} A & =-12 \Rightarrow-3 x-12
\end{aligned} \begin{aligned}
& =-12 \\
-3 x & =0 \\
x & =0.1 /
\end{aligned}
$$

NOTE: Operations on columns are same as on rows.

Theorem:
For an nxn matrix A, following are equivalent:

1. $\operatorname{det}(A) \neq 0$,
2. A^{-1} exists, and
3. $A X=B$ has a unique solution for any B.
4. A is invertible

3.5 Properties of Determinantial Function

1. If A is a $n \times n$ metric $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$,
2. $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$,
3. $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$,
4. $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}$,
5. A square matrix is invertible if and only if

$$
\operatorname{det}(\mathrm{A}) \neq 0, \text { and }
$$

6. $\operatorname{det}\left(A^{\mathrm{t}}\right)=\operatorname{det}(\mathrm{A})$

Example :9. Let $\mathrm{A}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(\mathrm{A})=-7$ find
(a) $\operatorname{det}(3 \mathrm{~A}),(\mathrm{b}) \operatorname{det}(2 \mathrm{~A})^{-1}$, (c) $\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)$ and (d) $\left|\begin{array}{lll}a & g & d \\ b & h & e \\ c & i & f\end{array}\right|$

Solution: a. $\quad \operatorname{det}(3 \mathrm{~A})=3^{3} \operatorname{det} \mathrm{~A}=27(-7)=-189$
b. $\quad \operatorname{det}(2 \mathrm{~A})^{-1}=\frac{1}{\operatorname{det}(2 A)}=\frac{1}{2^{3} \operatorname{det}(A)}=\frac{1}{8(-7)}=\frac{-1}{56}$
c. $\quad \operatorname{det}\left(2 A^{-1}\right)=2^{3} \operatorname{det}(A)=\frac{2^{3}}{\operatorname{det}(A)}=\frac{8}{-7}=\frac{-8}{7}$
d. $\quad\left|\begin{array}{lll}a & g & d \\ b & h & e \\ c & i & f\end{array}\right|=\left|\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right|=-\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=-(-7)=7$

Example:10. Use row reduction to show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

Solution.

$$
\begin{aligned}
\operatorname{det}(\mathrm{A})= & \operatorname{det}\left(\mathrm{A}^{\mathrm{l}}\right) \\
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|= & \left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right|=(b-a)(c-a)\left|\begin{array}{lll}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 1 & c+a
\end{array}\right| \\
& \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3}-\mathrm{R}_{1}
\end{aligned} \quad \begin{aligned}
& \\
&=(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & c-b
\end{array}\right| \\
& \mathrm{R}_{3}-\mathrm{R}_{2}
\end{aligned}
$$

Example:11. Without directly evaluating jusing properties of determinant show that

$$
\left|\begin{array}{ccc}
b+c & c \div a & b \div a \\
a & b & c \\
1 & 1 & 1
\end{array}\right|=0
$$

Solution:

$$
\left|\begin{array}{ccc}
b+c & c+a & b+c \\
a & b & c \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
a \div b \div c & a \div b+c & a+b+c \\
a & b & c \\
1 & 1 & 1
\end{array}\right| R_{1}+R_{2}
$$

$$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \\
& =0
\end{aligned}
$$

i. Example: 3 . Find A^{-1} of matrix A

$$
A=\left[\begin{array}{ccc}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right] \text { by the method of cofactors. }
$$

Solution: Cofactors of the matrix A are

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{cc}
3 & 2 \\
0 & -4
\end{array}\right|=-12, C_{12}=-\left|\begin{array}{cc}
0 & 2 \\
-2 & -4
\end{array}\right|=-4, C_{13}=\left|\begin{array}{cc}
0 & 3 \\
-2 & 0
\end{array}\right|=6 \\
& C_{21}=-\left|\begin{array}{ll}
0 & 3 \\
0 & 4
\end{array}\right|=0, \quad C_{22}=\left|\begin{array}{cc}
2 & 3 \\
-2 & -4
\end{array}\right|=-2, C_{23}=-\left|\begin{array}{cc}
2 & 0 \\
-2 & 0
\end{array}\right|=0, \\
& C_{31}=\left|\begin{array}{ll}
0 & 3 \\
3 & 2
\end{array}\right|=-9, \quad C_{32}=-\left|\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right|=-4, \quad C_{33}=\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|=6
\end{aligned}
$$

Matrix of cofactors, $C=\left[\begin{array}{ccc}-12 & -4 & 6 \\ 0 & -2 & 0 \\ -9 & -4 & 6\end{array}\right]$
Adjoint of matrix $A, \operatorname{adj}(A)=\left[\begin{array}{ccc}-12 & 0 & -9 \\ -4 & -2 & -4 \\ 6 & 0 & 6\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& =2(-12)+0(-4)+3(6) \\
& =-24+18=-6 \neq 0
\end{aligned}
$$

Inverse of matrix A is

$$
A^{-1}=\frac{1}{\operatorname{det} A}[\operatorname{adj}(A)]=\frac{1}{-6}\left[\begin{array}{ccc}
-12 & 0 & -9 \\
-4 & -2 & -4 \\
6 & 0 & 6
\end{array}\right]
$$

NOTE :
If we can find A^{-1}, then solution of linear system $A X=B$ is $\quad X=A^{-1} B$

3.7 Cramer's Rule

If A is non mari with $\operatorname{det}(A) \neq 0$, then the linear system $A X=B$ has a unique solution $X=\left(x_{j}\right)$ given by

$$
x_{j}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, j=1,2, \ldots, n
$$

Where A_{j} is the matrix obtained by replacing the jth column of A by B.
NOTE: If A is 3×3 matrix, then the solution of the system $A X=B$ is

$$
x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \quad y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \quad z=\frac{\operatorname{det}\left(A_{31}\right)}{\operatorname{det}(A)}
$$

L Example: Use Cramer's Rule to solve

$$
\begin{array}{r}
4 x+5 y=2 \\
11 x+y+2 z=3 \\
x+5 y+2 z=1
\end{array}
$$

Solution: $\quad \mathbf{A}=\left[\begin{array}{ccc}4 & 5 & 0 \\ 11 & 1 & 2 \\ 1 & 5 & 2\end{array}\right], \mathrm{A}_{1}=\left[\begin{array}{lll}2 & 5 & 0 \\ 3 & 1 & 2 \\ 1 & 5 & 2\end{array}\right], \mathrm{A}_{2}=\left[\begin{array}{ccc}4 & 2 & 0 \\ 11 & 3 & 2 \\ 1 & 1 & 2\end{array}\right], \mathrm{A}_{3}=\left[\begin{array}{ccc}4 & 5 & 2 \\ 11 & 1 & 3 \\ 1 & 5 & 1\end{array}\right]$

$$
\operatorname{det}(A)=-132, \quad \operatorname{det}\left(A_{1}\right)=-36, \quad \operatorname{det}\left(A_{2}\right)=-24, \quad \operatorname{det}\left(A_{3}\right)=12
$$

$$
\text { te }\left\{\begin{array}{l}
x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-36}{-132}=\frac{3}{11}, \\
y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{-24}{-132}=\frac{2}{11}, \\
z=\frac{\operatorname{det}\left(A_{31}\right)}{\operatorname{det}(A)}=\frac{12}{-132}=\frac{-1}{11}
\end{array}\right.
$$

$\notin \operatorname{NOTE}:$ when $\operatorname{det}(\mathrm{A})=0$, then there does not exist any solution of the system. (If the
System is not homogenous)

FULL MARKS: 50
M-107

Question:1. Let

$$
\begin{aligned}
& x-y-z=0 \\
& 2 x+y+z=3 \\
& x+2 y+z=0
\end{aligned}
$$

(a) Write the above system of linear equations in the form $A X=B$,
(b) Find A^{-1}, if exists, by using elementary matrix method, and
(c) Use A^{-1} to solve the above system of equations.

Question: 2. (a)Evaluate $\operatorname{det}(\mathrm{A})$ by using row reduction, where

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \tag{7}\\
2 & 0 & -1 & 3 \\
0 & 2 & 1 & 4 \\
-2 & -1 & 0 & 1
\end{array}\right]
$$

(b) Find all values of x for which matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \tag{7}\\
1 & x^{2}-2
\end{array}\right] \text { is invertible. }
$$

Question: 3. Solve the linear system by using Crammer's Rule

$$
\begin{align*}
& 3 x_{1}+5 x_{2}=7 \\
& 6 x_{1}+2 x_{2}+4 x_{3}=10 \tag{12}\\
& -x_{1}+4 x_{2}-3 x_{3}=0
\end{align*}
$$

Question: 4 . Suppose the points $(1,1),(2,3)$ and $(3,4)$ lie on the curve

$$
y=a x^{2}+b x+c
$$

i. Find the system of linear equations in a, b and c.
ii. Solve the system by Gauss - Jordon method to find a, b and c.
iii. Write the equation of the curve.

FULL MARKS: 50
M-107

Question:1. Let

$$
\begin{aligned}
& x-y-z=0 \\
& 2 x+y+z=3 \\
& x+2 y+z=0
\end{aligned}
$$

(a) Write the above system of linear equations in the form $A X=B$,
(b) Find A^{-1}, if exists, by using elementary matrix method, and
(c) Use A^{-1} to solve the above system of equations.

Question: 2. (a)Evaluate $\operatorname{det}(\mathrm{A})$ by using row reduction, where

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \tag{7}\\
2 & 0 & -1 & 3 \\
0 & 2 & 1 & 4 \\
-2 & -1 & 0 & 1
\end{array}\right]
$$

(b) Find all values of x for which matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \tag{7}\\
1 & x^{2}-2
\end{array}\right] \text { is invertible. }
$$

Question: 3. Solve the linear system by using Crammer's Rule

$$
\begin{align*}
& 3 x_{1}+5 x_{2}=7 \\
& 6 x_{1}+2 x_{2}+4 x_{3}=10 \tag{12}\\
& -x_{1}+4 x_{2}-3 x_{3}=0
\end{align*}
$$

Question: 4 . Suppose the points $(1,1),(2,3)$ and $(3,4)$ lie on the curve

$$
y=a x^{2}+b x+c
$$

i. Find the system of linear equations in a, b and c.
ii. Solve the system by Gauss - Jordon method to find a, b and c.
iii. Write the equation of the curve.

