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;/ Cdve Koo ¢ \ 2 1’x}= > x -4
| | 2 x5
T -2 3y
- 2 ~€6 5
L2 3 1
&GW&V} o \D C |
T
() d e £ Yo 3b 2c
(6 % C ) U‘) /—-a(, —e ._F
o ke Y M

btC (+a bta
a b C /:O

1 11

| 2 55
Gy Fal A, vy wdih ﬂ[ . i}

2 4 3

@/ go/‘fc )79 Crawmer 5 Vu/c’ , where & 079/’//'65
K —4y +2=4
4 = 4+ 22=-1
22 ’(-7,5; —-24=-20
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CHAPTER 10 Vectors and Surfaces

Exer. 1-10: Given a = (-2,3,1), b = (7,4, 5), and

¢ = (1, =5, 2), find the number.

Il a-b 2b-c

3 (@a-(bt+o) (bp)a-b+a-c

4 @@-0o-b (b)a-b—c-b

5 2a+Db)-3c 6 (a—b) -(b+c)
7 comp_ b 8 comp ¢
@compb (a+o 10 comp,c

Exer. 11-14: Find the angle between a and b.
Il a=—4i+8j—3k, b=2i+j+k

12 a=i—7j+4k, b=35i—k
13 a=(-2,-3,0, b=(=6,0,4)
14 a=(3, -5 —-1), b={2,1, =-3)

Exer. 15-16: Show that a and b are orthogonal.
15 a=3i—2j+k, b=4i+5j—-2k
16 a=(4, -1, -2), b=(2, -2, 5)

Exer. 17 -18: Find all values of ¢ such that a and b are
orthogonal.

@a: (c, =2, 3), b= {(c, ¢, —5)
18 a=4i+2j+ck, b=i+22j—-3ck

Exer. 19-24: Given points P(3, -2, —1), Q(1, 5, 4),
R(2, 0, —6), and S(—4, 1, 5), find the indicated quantity.

19 PO-RS 20 05 -RP

21 The angle between P—Q> and RS
—_>

—_>
@The angle between QS and RP

|

23 The component of PS along QR
—> —
24 The component of QR along PS

Exer. 25 -26: If the vector a represents a constant force,
find the work done when its point of application moves
along the line segment from P to Q.

@a: _i+5j—3k; P@4 0, -7), Q4 0)
26 a= (8, 0, —4); P(-1,2,5), Q4 1,0

27 A constant force of magnitude 4 lb has the same
direction as the vector a =i+ j+ k. If distance is
measured in feet, find the work done if the point of

application moves along the y-axis from (0, 2, 0) to
0, -1, 0).

28 A constant force of magnitude 5 N (Newtons) has the
same direction as the positive z-axis. If distance is
measured in meters, find the work done if the point of
application moves along a line from the origin to the
point P(1, 2, 3).

A child pulls a wagon along level ground by exerting a
force of 20 1b on a handle that makes an angle of 30°
with the horizontal (see figure). Find the work done in
pulling the wagon 100 ft.

Exercise 29

30 Refer to Exercise 29. Find the work done if the wagon
is pulled, with the same force, 100 ft up an incline that
makes an angle of 30° with the horizontal (see figure).

Exercise 30

31 If AB is a diameter of a sphere with center O and radius
r and if P is a third point on the sphere, use vectors to

show that APB is a right triangle. (Hint: Let v; = 0A
— N ; — .

and v, = OP, and write PA and PB in terms of v, and

v,.)
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32 A rectangular box has length a, width b, and height ¢

33

34

(see figure). If P is the center of the box, use vectors
to find an expression for angle APB in terms of a, b,
and c.

Exercise 32

Refer to Exercise 32. In the mineral sphalerite, each zinc
atom is surrounded by four sulphur atoms, which form a
tetrahedron with the zinc atom at its center (see figure).
The bond angle 6 is the angle formed by the S-Zn-S
combination. Use vectors to show that the tetrahedral
angle 0 is approximately 109.5°.

Exercise 33

Given a sequence A—B—C-D of four bonded atoms, the
angle between the plane formed by A, B, and C and
the plane formed by B, C, and D is called the torsion
angle 6 of the bond. This torsion angle is used to explain
the stability of molecular structures. If segment BC
is placed along the z-axis (see figure), how can | 0 be
computed in terms of the components of vectors BA and

cD?
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Exercise 34

The direction angles of a nonzero vector a=
{a;, ay, a;) are defined as the angles o, B, and y
between the vectors i, j, and k, respectively, and the
vector a. The direction cosines of a are cos «, cos 8, and
cos y. Prove the following:
a a a
(@) cosa = —-, cos B = =, cosy = 3

lall llall llall
(b) cos? & + cos? B + cos? y=1
Refer to Exercise 35.
(a) Find the direction cosines of a = (-2, 1, 5).

(b) Find the direction angles and the direction cosines
of i, j, and k.

(c) Find two unit vectors that satisfy the condition

cosa = cos 8 = cos y.

37 Three nonzero numbers [, m, and n are direction

numbers of a nonzero vector a if they are proportional
to the direction cosines—that is, if there exists a positive
number & such that

| =kcosa, m = kcos B, n=kcosy.
Ifd = (l2 +m? +n2)1/2, prove that
cosa =1/d, cos B =m/d, cosy =n/d.

38 Refer to Exercise 37. If [;,m,,n; and lz,mz,n2 are

direction numbers of a and b, respectively, prove that
(a) a and b are orthogonal if and only if

Lily+mmy+nn,=0

(b) a and b are parallel if and only if there is a number
k such thatl; = kl,, m; = km,, andn; = kn,
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- EXERCISES 10.4

Exer. 1-10: Find a x b. Exer. 22 -23: Use Example 4 and Exercise 21 to find the
volume of the box having adjacent sides AB, AC, and

I a=(1, -2, 3) =(2,1, —4)
2a=(-51,-1), b=(3,6, -2) @A(o, 0,0), B(l, —1,2), CO, 3, —1), DG, —4, 1)
3a= <0 L, 2> =(120 23 AQ2, 1, -1), B3, 0,2), C(@4, -2, 1), D(5, -3, 0)
42=1{0,0,4), ={(=7.10 24 If a, b, and c are represented by vectors with a common
5a=5-6j—k, b=3i+k initial point, show that a - (b x ¢) = 0 if and only if the
6a=2i+]j, b = —5j + 2k vectors are coplanar.
7 a=-3i+j+2k b=9i—3j—6k 25 Prove that (a x b) - b = 0 for all vectors a and b.
8a=3i—j+8k b=5j 26 glezhl: =a x ¢ and a # 0, does it follow that b = ¢?
Pa=4-6j+2k b=-2+3j-k 27 Leta#0.Iffaxb=axcanda-b =a-c, prove that
10 a = 3i, b =4k b=c

Exer. 11-12: Use the vector product to show that a and Exer. 28-31: Prove the given property if a=

b are parallel. (ay, ay, a3), b= (b, by, b3), c = {1, €5, ¢3), and m is a
Il a=(-6, —10,4), b=(3, 5, —-2) scalar.

@a=2i—j+4k, b= —6i+3j— 12k 28 (ma) xb=m(a xb) =a x (mb)

Exer. 13-14: Let a=(2,0,—1),b=(-3,1,0), and 29 @+tD)xc=@xo)+dxc)

c=(1, -2, 4). 30 axb)-c=a-(bxc)

13 Finda x (b xc)and (a x b) x c. 3lax(bxc)=(a-c)b—(a-b)c

14 Finda x (b —c¢) and (a x b) — (a x ¢). Exer. 32-37: Verify without using components for the

Exer. 15-18: (a) Find a vector perpendicular to the plane M

determined by P, (, and R. (b) Find the area of the 32 (a+b) x(a—b)=2(b x a)

triangle POR. 33ax(Mxc)+bx(exa)+ex(@xhb)y=0
15 P(1, -1, 2), 00,3, -1), RG, -4, 1 (Hint: Use (vi) of Theorem (10.33).)
(19P3.0.5, 0@ -1, -3), R 1, -1) 34 (axh) xe=(a Ob—(b-oa
17 P4,0,0, 0(,5,0), R(0, 0, 2) _|ac b-c
35 (@axb) - (ecxd)= a.d b-d

18 P(-1, 2, 0), Q(0, 2, -3), RG,0, 1)
Exer. 19-20: Refer to Example 3. Find the distance from 36 axb)x(exd)y=(axb-djec—-(axb-c)d
P to the line through Q and R. 37 axb) - (bxe)x(cxa)=(a-bxc)?

(DPG. 1, -2), 02,5, 1), R(-1,4,2)

20 P(-2,5, 1), 0B, -1, 4, R(1,6, -3)

2] If a= (a;, a5, a3),b = (b}, by, b3),c = (c, ¢y, c3),s
prove that

a-(bxc)y=(@xb)-c=| b b, by
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Exer. 1-4: Find parametric equations for the line
through P parallel to a.

| P(4,2,-3); a=(},2, 1)

2 P50, =2); a= (-1, —4, 1)

3 P(0, 0, 0);
P, 2, 3);

a=j
a=i+2j+3k
Exer. 5-8: Find parametric equations for the line

through P, and P,. Determine (if possible) the points at
which the line intersects each of the coordinate planes.

5 P(5,—2,4), P26 1)
6 P (=3, 1, —1), Py(7, 11, —8)
7 P(2,0,5, Py(6,0,3)

8 P2, =2, 4), P2 -2, -3)

9 If [ has parametric equations x =5 — 3¢, y = =2+ ¢,
z =149, find parametric equations for the line
through P(—6, 4, —3) that is parallel to /.

10 Find parametric equations for the line through the point
P(4, —1, 0) that is parallel to the line through the points
P(=3,9, —2) and P, (5, 7, —3).

Exer. 11 -14: Determine whether the two lines intersect,
and if so, find the point of intersection.

@5
-3 8 =3 10 10 -7

@x=1+2t, y=1-4, z=5—1
x=4—-v, y=-1+6v, z=4+4+v
12 x=1—-6t, y=3+42t, z=1-2t
x=242v, y=6+uv, z=2+4v
13 x=3+1¢, y =2 — 4, z=t1
x=4—-v, y=3+4v, z=-2+3
14 x=2-5:, y=6+2t, z=-3-2t
x=4-3v, y=T+5v, z=1+4v

Exer. 15 -18: Equations for two lines /; and /, are given.

Find the angles between /, and /,.

I5 x=7-21, y=4+4+3t, z=75¢
x=—1+4, y=3+4, z=1+1¢

x=5+3t, y=4—1t, z=3+4+72t
X = —t, y=1-2t, z=3+1¢

x+2_y z—4

x+5 y—-1 z+7
4 -3 9

Exer. 19-26: Find an equation of the plane that satisfies
the stated conditions.

Through P(6, —7, 4) and parallel to

(a) the xy-plane  (b) the yz-plane (c) the xz-plane

20 Through P(—2, 5, —8) with normal vector

(@i (b) j @k
21 Through P(—11, 4, —2) with normal vector
a=6i—5j—k

22 Through P (4,2, —9) with normal vector E’J

Through P(2, 5, —6) and parallel to the plane
3x—y+2z=10

24 Through the origin and parallel to the plane
Cx—6y+4z=7

25 Through P(—4, 1, 6) and having the same trace in the
xz-plane as the plane x +4y — 5z =8

26 Through the origin and the points P(0, 2, 5) and
(1, 4, 0)

Exer. 27 - 28: Find an equation of the plane through P, Q,
and R.

@ P, 1,3), 0(-1,3,2), R({, -1,2)
28 P(3,2, 1), Q(-1,1, =2), R@3, —4,1)

Exer. 29 -36: Sketch the graph of the equation in an xyz-
coordinate system.

29 (a)x=3 (b) y=-2
G@x=-4 )y=0
3 2x4+y—-6=0 323x-2,-24=0
33 2y —-3z—-9=0 3 S5x+y—4z4+20=0
@2x—y+5z+10=0 36 x+y+z=0

(¢)z=5

(©z=-%
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Exer. 37— 40: Find an equation of the plane.

37

38

39

40

Exer. 41-42: Find an equation of the plane through P
that is parallel to the given plane.

41 P(1,2, -3); 4x—y+3z—-7=0
42 P(3, =2,4); —2x+3y—-z+5=0

Exer. 43 - 46: Find a symmetric form for the line through
P, and P,.

43 P52, 4), P26, 1)
44 P (=3, 1, —1), Py, 11, —8)
45 P (4,2, -3), Py(=3,2,5)

(46) PG5, <7, 4, Py(=2,—1,4)

Exer. 47-50: Find parametric equations for the line of
intersection of the two planes.

47 x+2y-9z=1, 2x —3y+17z=0
2x+5y+16z=13, —x —2y—6z=-5
49 —2x+3y+9z=12, x—-2y—-57z=-8
50 5x —y—-12z=15, 2x+3y+4+2z=6

Exer. 51-52: Refer to Example 13. Find the distance
from P to the plane.

51 P(1,-1,2); 3x—-T7y4+z-5=0
@P(3, 1, -2); 2x+4y—5z+1=0

Exer. 53-54: Show that the two planes are parallel and
find the distance between the planes.

@4x—2y+6z=3, —6x+3y—9z=4
54 3x + 12y —6z=-2, 5x+20y—10z =7

Exer. 55-56: Refer to Example 14. Let [, be the line
through A and B, and let [, be the line through C and
D. Find the shortest distance between /; and /,.

@A(l, -2,3), B(2,0,5); C4, 1, —1), D(=2, 3,4
56 A(1,3,0), B(0,4,5); C(-2,-1,2), DS, 1,0

Exer. 57-58: Find an equation of the plane that contains
the point P and the line.

57 P5,0,2); x=3t+1, y=-2t+4, z=t-3
P(4,—3,0);x:t+5, y=2t—1, z=—-t+7

Exer. 59—-60: Use a dot product to find the distance from
A to the line through B and C.

59 AQ2, -6, 1); B(3, 4, —-2), c(, -1, 5)
60 A(1,5,0); B(-2,1, —4), C(©, -3,2)
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Exer. 61-62: Find the distance from the point P to the 66 z

line.

61 P2, 1,-2); x=3—-2t, y=—443t, z=14+ 2t

P(3, 1, —1); x=1+4r, y=3—1,

z=23t

Exer. 63-64: If a plane has nonzero x-, y-, and z-
intercepts a, b, and c, respectively, then its intercept form

is
x z
fydiiog
a b ¢

Find the intercept form for the given plane.
63 10x — 15y +62=30 64 12x 4+ 15y — 20z = 60

E Exer. 67-68: Graph f and g on the same coordinate

Exer. 65-66: Find an equation for the plane of the form plane for —2 < x < 2. (a) Estimate the coordinates of

Ax+By+ Cz=D.

65 z

their point P of intersection. (b) Approximate the angles
between the tangent lines to the graphs at P.

67 f(x) = sin(x?), gx) =cosx —x
68 f)=1-3x+x> g)=x"+1

SURFACES

In this section, we examine some techniques for obtaining accurate
sketches of surfaces in space that are described by equations in x, y,
and z. To sketch a surface with pencil and paper, we usually choose the
coordinate axes as in Figure 10.21, regarding the y- and z-axes as lying
in the plane of the paper and the x-axis as projecting out from the paper.
This technique is illustrated in Figures 10.58-10.68 and the charts in this
section. A disadvantage of choosing coordinate axes in this way is that
when a specific equation is graphed, the shape of the resulting surface
may seem distorted. For example, circular cross-sections may appear to
be elliptical and vice versa. For this reason, graphs in three dimensions
that are illustrated later in the text are computer-generated, with axes and
units of distance chosen to provide an undistorted view of a surface. In
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By Theorem (5.19), the surface area is given by

h
S=f 2 f(x)y/ 1+ [f'(x))? dx.
0
Now f'(x) = 2\/5(%)x—1/2 = /p/+/x, and so
i+ PR = 1+ 222 P
x Vx
which gives

FOVT+ 1 @ =24/py/x> "J;I P o /i,

Thus the surface area is

h h
S = 27:2@L Vx+pdx =4n./p [%(x + p)”}
0
3/2
_ 87./p [(h + )2 p3/2] _ /P [p3/2 [(M) - 1“
3 3 p

2 3/2
h
_8zp [<1+—> —1]
3 p

Since the point P (h, a) lies on the parabola y?* = 4px, wehave a® = 4 ph,
and we can express the altitude / in terms of the focal length p and the
radius of the base a:

a2

h=—
4p

Thus, h/p = a*/4p?, and the surface area may be written as
3/2
8 2 2
s="L 1 1+5) -1
3 4p

(b) Using the final formula of part (a) with a = % and p = 100, we have

8 (1007 15252
the surface area = L) (1

3/2
— 1| ~ 82,828 m?.
3 4(1002))

Exer. 1-8: Sketch the graph of the cylinder in an xyz-

coordinate system.

®x2+y2=9

3 4y + 972 =36

2 y2+72=16 5 x2=9; ®x2—4y=0
4 x?+52=25 7y2—x2=16 ' 8 xz=1
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Exer. 9-20: Match each graph with one of the equations.

A.
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Exer. 21-32: Sketch the graph of the quadric surface.

Ellipsoids

2 2 2

X y
21 7 + 9 + 16 =1

Hyperboloids of one sheet
2
23 (a) T+y2—22=1

(a)22-+—x2—y2=1

Hpyperboloids of two sheets

y2
25 (@) X2 — - —z*=1

4
2 2
2_ X Y
. _Z =
% @2-, -7
Cones
$2 2
v oz
27 ==
@F+7T=73
2
Y 2=
Paraboloids
2 _ 2 . 2
@y=77*7
y?
(@) z= x? + 9
Hpyperbolic paraboloids
2 .2

3 @z=x"—y
2

2
y°  x
@(a)Z=9"4

Exer. 33 -46: Sketch the graph of the equation in an xyz-

2
2 Y g
22 X+ 5+ 7
2
(b)xz—f—%—yz:l
2
(b)y2+%—x2=1
2
Z
®) 7 -y -2 =1
2 2
y 2 2
by - —x?— =1
Gy =7
2 2
b) = — =0
()4 ¥ +3

(b) x> = 4y* + 7

coordinate system, and identify the surface.

33 16x2—4y? =2 +1=0
34 8x2-+—4y2-f-z2 =16

35 36x = 9y? + 22

36 16x2 +100y? — 25z% = 400

37 x% — 16y? = 472

9x2+4y2+22=36

4
43

@) -

9217

38 3x2 -4y’ —2=12
40 16y = x2 + 472
224+ 0-22=1

44 2x +4y+3z=12
—16y* +92 =0

z=¢e
4x—3y—12
—z22-9=0 46 36x2

IZI Exer. 47 - 50: Graph the surface.

47

49

z=3y" - 3|x| 48 z = x% + 3xy + 47
2 2

2 ¥ xy x
Z=xy+x 50 -
Y T 15 9

Exer. 51-56: Find an equation of the surface obtained by
revolving the graph of the equation about the indicated

axis.

51 x2 +4y* =16; y-axis 52 y2 =4x; x-axis

53 z=4— y2; z-axis 54 7 = e‘yz; y-axis

55 2 —x?=1; X-axis 56 xz=1; z-axis

57 Although we often use a sphere as a model of the earth,

58

59

a more precise relationship is needed for surveying

the earth’s surface. The Clarke ellipsoid (1866), with

equation (x%/a®) + */b?) + (Z%/cH) =1 fora=b =

6378.2064 km and ¢ = 6356.5838 km, is used to

establish the geographic positions of control points in

the U.S. national geodetic network.

(a) Explain briefly the difference between the Clarke
ellipsoid and the usual spherical representation of
the earth’s surface.

(b) Curves of equal latitude are traces in a plane of the
form z = k. Describe these curves.

(c) Curves of equal longitude (or meridians) are traces
in a plane of the form y = mx. Describe these
curves.

Let m and b be nonzero real numbers.

(a) If the line y = mx + b intersects the parabola y2 =
4px in only one point, show that p = mb.

(b) Show that the slope of the tangent line to y2 =4dpx
at P(x;, y,)is y;/(2x)).

Establish the reflective property of the parabola. (Hint:
Show that d(Q, F) = d(F, P) in Figure 10.76 and use
the result in Exercise 58.)
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Exer. 1-8: (a) Sketch the two vectors listed after the
formula for r(¢). (b) Sketch, on the same coordinate
system, the curve C determined by r(¢), and indicate the
orientation for the given values of ¢.

I r(r) = 3ti+ (1 — 913,
r(0), r(l); tinR

2 r(t) = (1 — )i+,
_r(l), r(2); t>0

3 ) = (£ = Di+ (> +2)j,

(1), r2; -2<t<2
4 r(t) = 2+ cost)i — (3 — sint)j,
r(m/2), r(m); 0<t<2m
(Dr) = G+0i+ @ - nj+ (1 +20k,
r(=1), r); t>—1

6 r(t) =ti — 3sintj + 3costk,
r(0), r(7/2); t>0

7 r(t) =ti+4costj+ 9sintk,
r0), r(x/2); t>0

8 r(¢r) = tanti+ sectj + 2k,
r(0), r(n/4); —m/2 <t <mn/2

Exer. 9-16: Sketch the curve C determined by r(¢), and
indicate the orientation.

9 r(t) = €' costi+ € sintj; 0<t<m
10 r(t) = 2coshti+ 3sinhtj; tin R
I r(r) = i + 202 + 36°k; tinR
12 r(t) = i + £%j + tk; 0<t<4

13 r(t) = (¢ + i+ tj + 3k; tin R
14 r(t) =6sinti+4j+25costk; —2m <t <2nm
I5 r(t) =ti+tj+ sintk; tin R
16 r(t) =ti+2tj+ e'k; tinR

Exer. 17-20: Plot the curve C determined by r(¢), and
indicate the orientation.

17 r(t) = 3sin(t2)i + (4 — 17/?)j; 0<t<
18 r(t) = 5" + ¢~ 08}, 0<t<2m
19 r(t) = (4+sin2t)i+ (1 —3cos3t)j; —wr <t <m

20 r(z) = (1 4+ 3sin2t)i + (2cos 3t)j;

Exer. 21-26: Find the arc length of the parametrized
curve. Estimate with numerical integration if needed,
and express answers to four decimal places of accuracy.

21 x = 5t, y =42,  7=23% 0<r<2
@xztz, y=tsint, z=tcost; O0<t<1
23 x =¢é'cost, y=¢, z=¢é'sint; 0<r<2r7
24 x = 2t, y=4sin3t, z=4cos3t; 0<r<2m

EIZS x =3cost, y=2sint, z=2—t2;— 2<t<2
[c]26 x=1 -2 y=1,

z=2(1-nt; 0<r<1

27 A concho-spiral is a curve C that has a parametrization
x = ae* cost, y = aet' sint, z = be'; t > 0, where
a, b, and p are constants.
(a) Show that C lies on the cone a?7? = b*(x® + y?).
(b) Sketch C fora=b =4and u = —1.
(c) Find the length of C corresponding to the ¢-interval

[0, 00).
28 A curve C has the parametrization
x =asintsine, y =bsintcosa, z =ccost; t >0,

where a, b, c, and « are positive constants.
(a) Show that C lies on the ellipsoid

N
[\S)

2
Y
+'b—2+ =1.

le =
GNI 2\l

(b) Show that C also lies on a plane that contains the
Z-axis.
(c) Describe the curve C.

29 (a) Show that a twisted cubic having parametrization
xX=at,y= bt?, 7z =ct; t > 0 intersects a given
plane in at most three points.

(b) Determine the length of the twisted cubic x = 6¢,
y= 312, z = 13 between the points corresponding to
t=0andt = 1.

30 A rectangle can be made into a cylinder by joining
together two opposite and parallel edges. Shown in the
figure on the following page is a rectangle ABCD of
width 27r. Edge A D is joined to edge BC, and point A is
then positioned at (1, 0, 0) to form part of the cylinder
x2 4+ y2 = 1, sketched on the right of the rectangle.
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Exercise 30 (a) If [ is the line segment from A to another point P
in the rectangle and m is the slope of /, show that,
as a curve on the cylinder, / has a parametrization
X =cost,y =sint,z = mt.

D C
(b) Use part (a) to show that the curve on the cylinder
with shortest length from (1, 0, 0) to another point
P is a helix (see Example 4).
P
/
A | | B
f 27 {

11.2  LIMITS, DERIVATIVES, AND INTEGRALS

Limits, derivatives, and integrals for vector-valued functions are natural
generalizations of the corresponding concepts for real-valued functions of
a single real variable. We consider these generalizations in this section. We
could define the limit of a vector-valued function r by using an €-4 ap-
proach similar to that used in Definition (1.4) (see Exercise 45); however,
since r(¢) may be expressed in terms of i, j, and k, where the components
are scalar functions f, g, and 4, it is simpler to use the following definition.

Definition -1.1.4

Letr(f) = f()i+ g(t)j + h()k. The limit of r(t) as t approaches
ais S

lim (1) = [;ggm]i +’ng2 g(t)]j +[}gn h(t)]k; .

provided f,.g, and h__havé limits as:t approaches a. -

Thus, to find lim,_, , r(¢), we take the limit of each component of r(z).
We may state a definition similar to (11.4) for one-sided limits.

ILLUSTRATION

m lim(£%i + 3tj + 5k) = {lim t2] i+ [lim 3t]j + [lim 5} Kk
t—2 t—2 t—2 t—2

= 4i+6j+ 5k
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I

If R'(t) = r(¢), then R(z) is an antiderivative of r(¢). The next result
is analogous to the fundamental theorem of calculus.

Theorem Il : ol L
- IER@) is.an antiderivative of v(¢) on [a, b], then

A e SN 8 L LIS
b

b
f r(z)d: = R(t)] =R(®) — R(a).

a a

2
EXAMPLE =4 Findf r(t)dt if r(r) = 12631+ 4e¥j+ (1 + 1) 7'k
0

SOLUTION Finding an antiderivative for each component of r(z),
we obtain

R(?) = 3r* + 2¢¥j + In(r + Dk.
Since R’(t) = r(¢), it follows from Theorem (11.11) that

2
fr(t)dt=R(2)—R(0)
= (48i + 2¢%j + In3k) — (0i + 2j + Ok)
= 48i + 2(¢* — 1)j + In3k.

The theory of indefinite integrals of vector-valued functions is similar
to that developed for real-valued functions in Chapter 4. The proofs of
theorems require only minor modifications of those given earlier and are
thus omitted. If R(¢) is an antiderivative of r(¢), then every antiderivative
has the form R(¢) + ¢ for some (constant) vector ¢, and we write

Jr(t) dt =R(t)+¢, where R/(t) =r().

- EXERCISES 11.2

Exer. 1-8: (a) Find the domain of r. (b) Find r'(¢) and Exer. 9-16: (a) Sketch the curve (in the xy-plane)

().

Il r@t) =+t —1li++/2—1tj

1
2 r(t) = ;i+sin3tj 3 r(r) = tanti + (¢% + 81)j

determined by r(f) and indicate the orientation. (b) Find
r'(¢) and sketch r(¢) and r'(¢) for the indicated value of .

9 r(r) = —irti+1%; t=2

10 r(r) = e¥i+ e¥j; t=0

4r0)=eDi+sinltj 5 r(t) =14+ tantj+ 3k

1
6 () =i+ —j+ek 7 r()= i+ e j+ tk

Il r(t) =4costi+ 2sintj; t=3n/4

8 r(t) =In(l — )i +sif1tj + 1%k 12 r(t) =2secti+3tantj; t=rmn/4, |t| <7/2




13 r(t) =i+ 173
14 r(r) = Ffi+j;
I5 r(t) = 2t — i+ @ —1)j; 1 =3
16 r(r) = 5i+13f; =2

Exer. 17-20: A curve C is given parametrically. Find
parametric equations for the tangent line to C at P.

17 x=28—1,y=-5:243,z=8:+2; P(l, =2, 10)

18 x =47, y=1>-10, z=4/1; P(8,6,1)
19 x =¢, y=te, z=1>+4; P(1,0,4)
20 x =tsint, y=tcost, z=I1; P(x/2, 0, /2)

Exer. 21-22: A curve C is given parametrically. Find two
unit tangent vectors to C at P.

o y=e', z=124+4 P, 1,4
(@ x=sint+2, y=cost, z=1; P2, 1,0)

23 Refer to Exercise 27 of Section 11.1. Show that the
concho-spiral has the special property that the angle
between Kk and the tangent vector 1 (¢) is a constant.

2l x=¢

24 The general helix is a curve whose tangent vector
makes a constant angle with a fixed unit vector u.
Show that the curve with parametrization x = 3 — £,
y=3t2,z=3t+13 ¢ in R is a general helix by find-
ing an appropriate vector u.

25 A point P moves along a curve C in such a way that the
position vector r(t) of P is equal to the tangent vector
r'(¢) for every t. Find parametric equations for C, and
describe the graph.

26 A point moves along a curve C in such a way that the
position vector r(¢) and the tangent vector r'(¢) are al-
ways orthogonal. Prove that C lies on a sphere with cen-
ter at the origin. (Hint: Show that (d/dt) ||r(t)||2 =0)

Exer. 27 - 30: Evaluate the integral.
2
27 J (61% — 41 + 3k) dr
0
1
28 f (=5ti + 873j — 31°k) dt
~1
/4
29 j (sinti — costj + tantk) dt
0
! 2
30 f (te®i+ Vij + (* + D)7k dr
0

Exer. 31-34: Find r(¢) subject to the given conditions.

31 r(r) = %+ (61 + 1)j + 8k,
r(0) =2i—3j+k

CHAPTER |1 Vector-Valued Functions

32 r'(r) = 2i — 43 + 6/7k,
r(0) =i+ 5j+3k

@ r(r) = 61 — 12¢% + k,

r(0) =i+2j—3k, r(0)=7i+k
34 r(¢) = 6ri + 3,
r0) =4i—j+k 1) =5j

Exer. 35-36: If a curve C has a tangent vector a at a
point P, then the normal plane to C at P is the plane
through P with normal vector a. Find an equation of the
normal plane to the given curve at P.

z=1>+4; P(1,0,4)

36 x =tsint, P(n/2, 0, n/2)
Exer. 37 -38: Find [u(?) - v()] and [u(?) x v(®)] .

37 u() =ri+ 1% + £k,
38 u(r) =2ri+66j+1°k, vi)=eli—e'j+k

39 Ifu and v are vector-valued functions that have limits as
t — a, prove the following:

(@) lim[u() +v(»)] = lim u(?) + lim v(1)

x=é, y =té,

y=1cost, z=tI,

v(t) = sinti+ costj+2sintk

(b) lim[u(s) - v(z)] = limu(z) - lim v(¢)
t—a t—a t—a

(c) lim cu(¢) = ¢ lim u(¢), where c is a scalar
t—a t—a

40 If a scalar function f and a vector-valued function u
‘have limits as ¢t — a, prove that

lim f(t)u(r) = [tlgr; f(t)] [th_lfl U(t)}-

41 Prove thatlim,_, , u(z) = bif and only if for every e > 0
there is a § > 0 such that Jlu(¢z) — b|| < ¢ whenever
0 < |t —al| < 8. Give a graphical description of this
result.

42 If u and v have limits as t — a, prove that
lim[u(z) x v(z)] = [lim u(t):l X [lim v(t):|.
t—a t—a t—a

Exer. 43-44: If u and v are differentiable, prove the
stated rule for derivatives.

43 [u(t) +v(0)] =u'(t) + V()

44 [u(@) x vi)] =u@) x V() + 0 () x v(r)

45 If f and u are differentiable, prove that

[fOu®] = fFOUE) + f @u@).

46 If f and u are differentiable with suitably restricted
domains, prove the chain rule

u(f@)) = f'OW(f@).
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47 Ifu, v, and w are differentiable, prove that

u@) - v(t) x wr)]' = [W' @) - v(z) x w(t)]
+[u() - v () x w()]
+u@) - v@e) x w(@)].

48 If u'(t) and u” (¢) exist, prove that

937

prove the following:

b b b
(a)f [u(t)+v(t)]dt=f u(t)dt-l-J v(t)dt

a a

b b
(b)j cu(t)dt = cf u(t) dt

a

50 If uisintegrable on [a, b] and ¢ is in V,, prove that

[u@) x u' )] =u@) x u”’ ().

49 If u and v are integrable on [a, b] and if ¢ is a scalar,

Figure 11.14

AY
C P(f(1), 8(1))

(1)
P ®

=

b b
f c-u(t)dt=c~f u(t)de.

a a

CURVILINEAR MOTION

In Section 3.7, we analyzed the motion of an object moving along a straight
line using a function f whose value f(z) was the position of the object at
time z. In this section, we investigate the motion of an object along a curve
in the plane or in space. Motion often takes place in a plane. For example,
although the earth moves through space, its orbit lies in a plane. (This
will be proved in Section 11.6.) To study the motion of a point P in a
coordinate plane, it is essential to know its position (x, y) at every instant.
As usual, for objects in motion we assume that the mass is concentrated at
P. Suppose the coordinates of P are given by the parametric equations

x = f(),
where ¢ is in some interval /. If we let
r(t) = f(t)i+ g()j,

then as ¢ varies through I, the endpoint of r(z) traces the path C of the
point. We refer to r(z) as the position vector of P. As in Figure 11.14, we
represent

y=g(),

r'@) = f'®i+ g0

as a tangent vector to C with initial point P. The vector r'(¢) points in the
direction of increasing values of ¢ and has magnitude

['®] = VI OF + g2

Let #, be any number in /, and let F,, be the point on C that corresponds
to ¢, (see Figure 11.14). If C is smooth, then, by Theorem (9.6), the arc
length s(¢) of C from P, to P is

t t
s(t) = f \/ LF'OF + [g' (1)) dt = J ¥’ @] ar.
tO t()
Applying Theorem (4.35), we obtain

d d (', .
S O1= EL '@ de = |r'®)].
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for the projectile to reach D. Substituting this value of ¢ into the parametric
equation for y found in part (a), we find that the maximum altitude is

1

vy sina \ 2 . vy Sin vg sin
+ (v, sina) = .
8

(

2g

- EXERCISES 11.3

Exer. 1-8: Let r(t) be the position vector of a moving |Z|

point P. Sketch the path C of P together with v(¢) and
a(t) for the given value of .

I r(r) = 2ti + (4% + 1)j; r=1
r(t) = (4 — 9t%)i + 3tj; r=1
r(t) = sinti + 4 cos 2tj; t=m/6
r(r) = cos? ti + 2 sintj; t =3n/4

t=m/2

2

3

4

5 r(t) = costi+ sintj + tk;
6 r(t) =4sinti+2tj+ 9costk; ¢ =3x/4
7 r(t) = 2i +tj + 2k; =1

8 r(t) =%+ 13 + tk; t=2

Exer. 9-16: If r(¢) is the position vector of a moving point
P, find its velocity, acceleration, and speed at the given
time £.

2
9r(t)=?i+t+—1j; t=2
10 r(r) = 1i + (1 + VD)j; t=4
I @) =i+ e'j; r=0
12 £(t) = 2ti + e ; r=1
13 r(¢) = e (costi+ sintj + k); t=m/2
14 r(t) = t(costi+ sintj + tk); t=m/2

(D)= +0i+2i+Q+30k 1 =2
16 r(t) = 2ti+ j + 91°k; r=2
17 If a point moves at a constant speed, prove that the

velocity and acceleration vectors are orthogonal. (Hint:
See Theorem (11.9).)

18 If the acceleration of a moving point is always 0, prove
that the motion is along a line.

Exer. 19-20: Let r(f) be the position vector of a moving
point. Plot the path C traced out by the point (preferably
in a dot or a point mode). From the graph, estimate the
value of ¢ for which the velocity is largest.

19 r(t) =28costi+ 10sin(0.87)j; 0<t <2m

20 r(¢) = (5+cos3t)i+ 1.6sin2tj; 0<t<m

Exer. 21-22: Solve, using the results of Example 2 and
4000 mi for the radius of the earth.

21 A space shuttle is in a circular orbit 150 mi above the
surface of the earth. Approximate
(a) its speed
(b) the time required for one revolution

22 An earth satellite is in a circular orbit. If the time

required for one revolution is 88 min, approximate the
satellite’s altitude.

Exer. 23 -26: Solve, using the results of Example 5.

23 A projectile is fired from level ground with an initial
speed of 1500 ft/sec and angle of elevation 30°. Find
(a) the velocity at time ¢
(b) the maximum altitude
(c) the range
(d) the speed at which the projectile strikes the ground
24 Work Exercise 23 if the angle of elevation is 60°.

25 A baseball player throws a ball a distance of 250 ft. If
the ball is released at an angle of 45° with the horizontal,
find its initial speed.

26 A projectile is fired horizontally with a velocity of 1800
ft/sec from an altitude of 1000 ft above level ground.
When and where does it strike the ground?

27 To test ability to withstand G-forces, an astronaut is
placed at the end of a centrifuge device (see figure) that
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rotates at an angular velocity w. If the arm is 30 ft in IE, 30 Refer to Exercise 29. If the period of a satellite is

length, find the number of revolutions per second that
will result in an acceleration that is eight times that of
gravity g. (Use ||g|| = 32 ft/sec?.)

Exercise 27

28 The orbits of Earth, Venus, and Neptune are nearly

circular. Given the information in the table, estimate the
(average) speed of each planet to the nearest 0.1 km/sec.

Period Distance from sun
Planet | (days) (10% km)
Earth 365.3 149.6
Venus 2247 108.2
Neptune 60,188 4498

29 A satellite moves in a circular orbit about the earth

at a distance of d miles from the earth’s surface. The
magnitude of the force of attraction F between the
satellite and the earth is

mM

IF| = G———s,
(R+4d)

where m is the mass of the satellite, M is the mass
of the earth, R is the radius of the earth, and G is a
gravitational constant. Use the results of Example 2 to
establish Kepler’s third law for circular orbits:

2 4r? 3
T = —G——M-(R+d) ,

where T is the period of the satellite. (Hint: ||F|| is also
given by m |[r"(1)].)

measured in days, Kepler’s third law for circular orbits
may be written T2 = 0.00346[1 + (d/R)]°.

(a) A satellite is moving in a circular orbit that is 1000
mi above the earth’s surface. Assuming that the
radius of the earth is 3959 mi, estimate the period
of the satellite’s orbit to the nearest 0.01 hr.

(b) In a geosynchronous orbit, a satellite is always
located in the same position relative to the earth—
that is, the period of the satellite is one day. Estimate,
to the nearest mile, the distance of such a satellite
from the earth’s surface. (Information of this type is
needed for positioning communication satellites.)

Exer. 31 -32: Solve, using the results of Example 6.

3l

32

33

A major-league pitcher releases a ball at a point 6 ft
above the ground and 58 ft from home plate at a speed of
100 mi/hr. If gravity had no effect, the ball would travel
along a line and cross home plate 4 ft off the ground, as
shown in the figure. Find the drop d caused by gravity.

Exercise 31

’T‘ Pitcher’s
: mound -

A quarterback on a football team throws a pass,
releasing the ball at an angle of 30° with the horizontal.
Approximate the velocity at which the football must be
released to reach a receiver 150 ft downfield. (Neglect
air resistance.)

Vertical wind shear in the lowest 300 ft of the
atmosphere is of great importance to aircraft during
takeoffs and landings. Vertical wind shear is defined as
dv/dh, where v is the wind velocity and & is the height
above the ground. During strong wind gusts at a certain
airport, the wind velocity (in miles per hour) for altitudes
h between 0 and 200 ft is estimated to be

v = (12 + 0.006h*2)i + (10 + 0.005h%/2)j.

Calculate the magnitude of the vertical wind shear 150
ft above ground.
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The formula for K in Definition (11.20) is usually cumbersome to
apply to specific problems. In the next section, we shall derive a more
practical formula that can be used to find curvature.

- EXERCISES 11.4

Exer. 1-6: (a) Find the unit tangent and normal vectors
T(t) and N(t) for the curve C determined by r(¢).
(b) Sketch the graph of C, and show T(¢) and N(¢) for
the given value of t.

I r(0) =i — 1%, t=1
2 r(t) = —1%i + 2tj; t=1
@r(z) = 13 + 3tj: =1

4 r(t) =@+cost)i— (3 —sint)j; t=n/6
5 r(t) = 2sinti + 3j + 2 coszk; t=mn/4
6 r(t) = ti+ 3%+ 1’k; t=1

Exer. 7-18: Find the curvature of the curve at P.

@y=2—x3; P(1, 1)
8 y=x" P, 1)
9 y=e"); P, 1)
10 y=In(x —1); P(2,0)
11 y=cos2x; P, 1)
12 y =secx; P(n/3, 2)
13x=t-1, y =1 P@3,2)
@x=t+1,  y=~2+4+3 PQL3
I5x=1—-1%  y=1-1% P(0, 1)
16 x=t—sint, y=1-—cost; P(r/2-1, 1)
17 x = 2sint, y =3cost; P(1, 2/3)
18 x=cos’t,  y=sin’t; PGV2, 3v2)

Exer. 19 -22: For the given curve and point P, (a) find the
radius of curvature, (b) find the center of curvature, and
(c) sketch the graph and the circle of curvature for P.

19 y=sinx; P(n/2, 1)

20 y =secx; P, 1)
@ y=¢: PO

2 xy=1 P, 1)

Exer. 23-26: For the given curve C and point P,
approximate the curvature of C at P and plot the curve
C along with the circle of curvature for C at P.

4
23 x =cost, y=-sin(0.8¢); P (cos (%) , sin (1—7;))

y =sin(1.2t); P(1+4cosl1, sin1.2)
y=8 -7 P33

24 x =1+ cost,
25 x = 5¢2,
26 x =92(3 = 21), y=12t(3 =3t +21%);

P(0.936, 5.952), t=0.2

Exer. 27 -32: Find the poihts on the given curve at which
the curvature is a maximum.

@y =e 28 y = coshx
29 9x% +4y? =36 30 9x2 —4y? =136
31 y=Inx 32 y=sinx

Exer. 33 - 36: Find the points on the graph of the equation
at which the curvature is 0.

@Ey:x“—le2

35 y =sinhx

34 y =tanx

36 y=e"

37 Suppose that a curve C is the graph of a polar equation
r= f(0).If r =dr/d9 and r" = d*r/d6?, show that
the curvature K at P(r, 0) is

Z(r/)2 —rr" + r2

[(r/)2 + r2]3/2

(Hint: Use x = rcosb and y = rsinf to express C in
parametric form.)

Exer. 38-—40: Use the formula in Exercise 37 to find the
curvature of the polar curve at P(r, 6).

38 r =a(l —cosf); 0<0 <2n
39 r = sin26; 0<0 <27
40 r = &%




41 Let P(x, y) be a point on the graph of y = f(x) at
which K # 0. If (h, k) is the center of curvature for P,
show that

’ 1+ N2
heyo 2L ”(y)]’ K=y
y y

N2
+[1+(Y)]_

"

Exer. 42-46: Use the formulas in Exercise 41 to find the
center of curvature for the point P on the graph of the
equation. (Refer to Exercises 7-11.)

42 y=2-x3 P, 1
43 y=x* P(1, 1)
44 y=e"; PO 1)

y =In(x —1); P2, 0)

46 y = cos2x; P, 1)

47 The path of a highway and exit ramp are superimposed
on a rectangular coordinate system such that the high-
way coincides with the x-axis. The exit ramp begins at
the origin O. After following the graph of y = —Q%x3
from O to the point P(3, —1), the path follows along
the arc of a circle, as shown in the figure. If K(x) is
the curvature of the exit ramp at (x, y), find the center
of the circular arc that makes the curvature at P(3, —1)
continuous at x = 3.

Exercise 47

"% Highway:

48 Use the equation y = mx + b to prove that the curvature
at every point on a line is O (see Example 4).
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49 Prove that the maximum curvature of a parabola is at the
vertex.

50 Prove that the maximum and minimum curvatures of
an ellipse are at the ends of the major and minor axes,
respectively.

51 Prove that the maximum curvature of a hyperbola is at
the ends of the transverse axis.

52 Prove that lines and circles are the only plane curves that
have a constant curvature. (Exercise 17 of Section 11.5
shows that this result is not true for space curves.)

Exer. 53 -56: If the curve C in Figure 11.23 has a smooth
parametrization x = f(¢), y = g(¢t), then, by Theorem
(9.6), the relationship between ¢ and the arc length
parameter s is given by

s= f t\/ [F @ + £ @) du,

where a is the value of ¢ corresponding to the fixed point
A. Use this relationship to express the given curve in
terms of the arc length parameter s if the fixed point A
corresponds to ¢ = 0. (Hint: First evaluate the integral to
find the relationship between ¢ and s, and then substitute
for ¢t in the parametric equations.)

53 x=4t—-3, y=3t+5 t>0
54 x =312, y=2  t>0
55 x =4cost, y=4sint; 0<t<2m

56 x =¢' cost, y=e'sint; t>0

57 Prove that if & is a nonnegative function that is nonzero
and continuous on an interval [0, a], then there is a
plane curve C such that k represents the curvature of
C as a function of arc length. (Hint: If s is in [0, a],
define

h(s) =fk(r) &, x=f) =f cosh(t) d,
0 0

and y=g(s) = fs sinh(t)dt.)
0

58 Use Exercise 57 to work Exercise 52.



SOLUTION

(a) If we let
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r(r) = ti+ 1% + £k,

then the curve is the same as that considered in Example 1. Substi-
tuting the expressions obtained there for r'(¢) and r'(z) x r’(¢) into the
formula for K in Theorem (11.25) yields

209t* + 912 + 1)1/2
K=—-— 2 32
Or* + 412 + 1)

We could also find K by substituting for ay and ”r/ (1) H in Theorem

(11.25).

(b) Substituting ¢ = 1, 2, 3, and 4 into the formula for K obtained in part
(a), we obtain the following approximations for K (compare with the table

on page 962).
k t 1 2 3 4
x, y, 2) (1,1,1) (2,4,8) (3,9,27) (4,16,64)
K 0.1664 0.0132  0.0027 0.0009

Using limit theorems, we can show that lim, | K = O—that is, the
curvature of the curve.approaches that of a line as ¢ increases.

- EXERCISES 11.5

Exer. 1-8: Find general formulas for the tangential and
normal components of acceleration and for the curvature
of the curve C determined by r().

I r()=r%i+@Ge+2)j 2 r@) = Q2 = 1)i+ 5t

3 r(t)=3ti+25+3°%k 4 r(t) = 4ri +1%j + 217k

5 r(t) =t(costi+ sintj) 6 r(t) = coshti+ sinhtj
r(t) = 4costi +9sintj +tk

8 r(t) =e'(sinti+ costj + k)

9 A point moves along the parabola y = x% such that
the horizontal component of velocity is always 3. Find
the tangential and normal components of acceleration at
P(1, 1).

@ Work Exercise 9 if the point moves along the graph of
y= 2x3 — x.

Prove that if a point moves along a curve C with a
constant speed, then the acceleration is always normal
to C.

Use Theorem (11.25) to prove that if a point moves
through space with an acceleration that is always 0, then
the motion is on a line.

If a point P moves along a curve C with a constant
speed, show that the magnitude of the acceleration is
directly proportional to the curvature of the curve.

If, in Exercise 13, a second point Q moves along C with
a speed twice that of P, show that the magnitude of the
acceleration of Q is four times greater than that of P.

Show that if a point moves along the graph of y =
f(x) for a <x <b, then the normal component of
acceleration is O at a point of inflection.



11.6 Kepler’s Laws

16 If a plane curve is given parametrically by x = 18 An elliptic helix has parametric equations x = acost,
F@),y=g@) and if f” and g” exist, use Theorem y = bsint, z = ct, where a, b, and ¢ are positive real
(11.25) to prove that the curvature at the point P(x, y) numbers and a # b. Find the curvature at (x, y, z).

is given by Theorem (11.19).

17 Show that the curvature at every point on the circular
helix x =acost,y = asint,z = bt, where a > 0, is
given by K = a/(a” + b?).
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KEPLER’S LAWS

It is fitting to conclude this chapter with a display of the power and beauty
of vector methods when applied to the derivation of three classical physi-
cal laws. The discussion in this section is not simple, for it is not a simple
problem that we intend to consider. There is no exercise set at the end of
this section. The reason is that we are not interested in numerical calcu-
lations involving the laws to be developed. Your objective should be to
carefully read and understand each step of the discussion. Proceed slowly.
You will gain considerable insight into vector methods by studying the
material that follows.

After many years of analyzing an enormous amount of empirical data,
the German astronomer Johannes Kepler (1571-1630) formulated three
laws that describe the motion of planets about the sun. These laws may be
stated as follows. '

First Law: The orbit of each planét is an ellipse with the sun at
one focus.

Second Law: The vector from the sun to a moving planet sweeps
out area at a constant rate..

Third Law:  If the time required fora planet totravel once around
its elliptical orbit is 7 and if the major axis of the
ellipse is 2a, then 7% = ka® for some constant k.

Approximately 50 years later, Sir Isaac Newton (see Mathematicians
and Their Times, Chapter 3) proved that Kepler’s laws were consequences
of Newton’s law of universal gravitation and second law of motion. The
achievements of both men were monumental, because these laws clarified
all astronomical observations that had been made up to that time.

In this section, we shall prove Kepler’s laws through the use of vectors.
Since the force of gravity that the sun exerts on a planet far exceeds that
exerted by other celestial bodies, we shall neglect all other forces acting
on a planet. From this point of view, we have only two objects to consider:
the sun and a planet revolving around it.



Exercises [2.2

Theorem 12.7

EXAMPLE®7
every pair (a, b).

SOLUTION

If a function f-of two variables is continuous at (a, b) and a function
g of one variable is continuous at :f (a, b), then the function A deﬁned
= g(f(x, y))is-continuous at: (a b)

Theorem (12.7) allows us to establish the continuity of composite func-
tions of several variables, as illustrated in the next example.

2 3 . .
If h(x, y) = €* T%Y*Y" show that 4 is continuous at

If we let f(x,y)=x2+5xy+y> and g(t) =¢, it
follows that h(x, y) = g(f(x, y)). Since f is a polynomial function, it
is continuous at every pair (a, b). Moreover, g is continuous at every
t = f(a,b). Thus, by Theorem (12.7), 4 is continuous at (a, b).

- EXERCISES 12.2

Exer. 1-10: Find the limit.
. %2 =2
lim
(x,)— 0,003 + xy
44x
lim
xy—>2ND2—y

. y+1
3 lim _
(x,y)—=>(n/2,1)2 — cos x

lim _y—-i-x_
xy)~>-13) (x — D(y +2)

x4_y4

lim
@N=>00x? + y?

. X =203 4 2% 4 x2y?
lim 5 5
(x,9)—(1,0) (x—D"+y

3x3 - 2x2y + 3y2x - 2y3

7 lim
(x.)—(0,0) x4 y?
3.2 2_ .3
8 lim X X )21 + x;: y
(x,)—(0,0) x“+y
. . 22 L34 43 44yt 4 42,
.3, (0,2,0) x4 (y —2)2 + 72
= (z+3)*
o ( )

Iim -
(3.0 0.2,-3) x2 + (7 + 3)?

Exer. 11-20: Show that the limit does not exist.
2 2_ .2
(x,)—>0,0x° + 2y
2 2
-2
lim x xy + Sy
xN=>0.0  3x% 4 4y?
lim xy—2x—y+2
@N=>12x*+y* —2x —4y +5
- 2y —2
A Al
E->E2Dx+2) 4+ (y—1)

lim 4x* y
(x, y)—>(0 02x* +3y*
3
x,y)—>0,0)5x" 4+ 2y

. xy+yz+xz
@ lim )
(x,3,2)—>(0,0,0) x“ 4 y“ + z

. 2x% +3y2 + 22

lim  —
(X,y.z)—>(0,0,0) X +y +z
(<39 (-3.00) (x + 3)7 52 + 22

19

(x — 2)yz

20 lim —_—
x3.0—2.00) (x — 2)* + y*




Exer. 21 -24: Use polar coordinates to find the limit, if it
exists.

. xy?
lim -
(e, »)—>00x" +y

=y

(e, y)—=>0,0x° +y

2, .2
x
23 lim ‘—;_y—z
x,»)—(0,0) sin(x* + y*)
sinh(x2 + y?)

24
2+ y2

im
(x,y)—(0,0)

Exer. 25 — 28: Describe the set of all points in the xy-plane
at which f is continuous.

(28) /(. y) = Inx +y — 1)
Xy
26 , =
fx, y) R

27 F(x, y) = JxeV! ™Y

28 f(x, y) =+/25 — x> — y?

Exer. 29-32: Describe the set of all points in an xyz-
coordinate system at which f is continuous.

1

29 f(x, 9,2 = 5—5—
fy, 2 R

@D s, v, ) = Vaytanz

@f(x, Y, 2) =+/x —2In(yz)

32 f(x, y,2)= 4—)62—)12—z2

Exer. 33 -34: The graph of f is shown in the figure. Use
polar coordinates to investigate lim(x 10,00 f (6 ¥)-

x2 + y2
In(x? + y%)

33 flx, y) =

CHAPTER 12 Partial Differentiation

sin(2x? + yz)
x2 + y2

34 f(x,y)=

Exer. 35-38: Find h(x, y) = g(f(x, y)) and use Theorem
(12.7) to determine where h is continuous.

35 fx, y) =x" =y g(t) = (> = &)/t

36 f(x,y)=3x+2y—4; g)=InE+5)

37 f(x, y) =x+tany; g(z):z2+1

38 f(x, y)=ylx; g(w) =e”

39 If f(x, y) =x*+2y, gt) =¢', and h(t) =12 — 31,
find g(f(x, ), h(f(x, y)), and f(g(t), h(?)).

40 If f(x,y,z)=2x+ye* and g(r)=1r% find
g(f(x, y, 2)).

41 If f(u,v)=uv—-3u+v, g, y)=x—2y, and
k(x, y) =2x+y, find f(g(x, y), k(x, y)).

42 If f(x, y) =2x +y, find f(f(x, y), f(x, y)).

43 Extend Definition (12.3) to functions of four variables.

44 Prove that if f is a continuous function of two variables
and f(a, b) > 0, then there is a circle C in the xy-plane
with center (a, b) such that f(x, y) > O for every pair
(x, y) thatis in the domain of f and within C.

45 Prove, directly from Definition (12.3), that

a lim x=a (b lim =b
@) (x,y)—>(a, b) ( )(x,y)—>(aq b)y
46 If lim No(a by & ) =1L and c is any real number,

prove, directly from Definition (12.3), that

Iim cf(x,y) =cL.
(x, y)—(a, b) f Y
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CHAPTER 12 Partial Differentiation

Third and higher partial derivatives are defined in similar fashion. For

example,
3 3 (9% 3’f
fxx = fxxx = ax =

ox x> ax>’
ax X Y gx \dydx ) oxdyax’

and so on. If first, second, and third partial derivatives are continuous, then
the order of differentiation is immaterial—that is,

Jox = o = frny a0d fy = frp) = fpe
Of course, letters other than x and y may be used. If f is a function of r
and s, then symbols such as

af 3%f

r,s), P Gy
£r.5) o
are used for partial derivatives.

Similar notations and results apply to partials of functions of more than

two variables.

£n9), f

Exer. 1-18: Find the first partial derivatives of f. x

|
2

3

G,y =22 —xy? +3y +1
fx, y) =@ =y?)°

f(r ) =Vr* +5?

N

t
f(S,l‘)‘—‘;—?

f(x, ) =xe’ + ysinx
fx, y)=e"Inxy
t+v

f@,v)=1In
f(u, w) = arctan hd
w

fx, ) = xcos ~
y

flx, y)= ‘/4x2 — y2 sec x

f(x,y,2) = 3x2z +xy2
fx, y, 0 =x2y3 2" +2x - 5yz

f(r, s, t)= r2e® cost

2:—t2
14 f(x, y,t)= m
I5 f(x, y,z) =xe —ye* +ze™”

16 f(r,s, v, p)=r> tans+ﬁe(”2) —vcos2p
17 f(g, v, w) =sin_1Jq_v+ sinvw

18 f(x,y, z) =xyze™*?
Exer. 19 - 24: Verify that Wy = Wyye
19 w =xy4 —2x2y3 + 4x? — 3y

x2

20 w

21 w=x’e? +y2cosx
_ 2, L
22 w=ye '+ ==
x2y3
23 w=xzcosh-z—
y

24 w=\/xz+yz+z2

@ If w = 3x%y3z + 2xy*7%2 — yz, find Wyeys
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26 Ifw=uvr? — 3uv2t3, find w,

ut*
27 Ifu=vsecrt, findu,,,

28 If v = yIn(x* + 2%, find v_,,

8w
29 If w =sinxyz, find .
Y 0z dy ox
2 3
0
30 Ifw = 2x 2,ﬁnd w2‘
Yy +z az dy
31 Ifw = r*sr — 352", verify thatw,,, = w,, = W,
32 If w =tanuv + 21n(u + v), verify that W,y = Wy =

wvvu )

Exer. 33 -36: A function f of x and y is harmonic if
2f o%f
ax? 8y2

throughout the domain of f. Prove that the given
function is harmonic.

(33) fx, y) =Inyfx> + 2
34 fx, )

35 f(x, y) =cosxsinhy+ sinxcoshy
36 f(x,y)=¢*

=0

Y
= arctan -
X

cosy +e 7 cosx

37 If w =cos(x — y) + In(x + y), show that
Pw 3w
ax? oy’

38 fw=(y— 2x)% — vy = 2x, show that W

0.

=0
—4w,, =

2
fFw=e " = w, for every real

number c.

sin cx, show that W,

40 The ideal gas law may be stated as PV = knT, where
n is the number of moles of gas, V is the volume, T is
the temperature, P is the pressure, and k is a constant.
Show that

aVv oT oP
aT aP oV

Exer. 41— 42: Show that v satisfies the wave equation

3%y 2 a%v

— =a"—.
at? ax?
4] v = (sinak?)(sinkx)
42 v=(x— at)4 + cos(x + at)

Exer. 43 - 46: Show that the functions u and v satisfy the

Cauchy-Riemann equations u, = v and u, = —v,.
43 u(x, y) = x? - yz; v(x, y) = 2xy
y
4 u(x, y) = 5——; v(x, y) = —5
2412 R
45 u(x, y) =e*cosy;, v(x, y) =€ siny

46

47

48
49

50

51

52

u(x, y) = cosx coshy + sinx sinh y;
v(x, y) = cosxcoshy — sinx sinh y

List all possible second partial derivatives of w =
fx, y, 2).

Ifw= f(x, y, z, t, v), define w, as a limit.

A flat metal plate lies on an xy-plane such that the
temperature T at (x, y) is given by T = IO(x2 + y2)2,
where T is in degrees and x and y are in centimeters.
Find the instantaneous rate of change of T with respect
to distance at (1, 2) in the direction of

(a) the x-axis
(b) the y-axis

The surface of a certain lake is represented by a
region D in an xy-plane such that the depth under the
point corresponding to (x, y) is given by the function
f(x, y) =300 — 2x?2 — 3y, where x, y, and f(x, y)
are in feet. If a water skier is in the water at the point
(4, 9), find the instantaneous rate at which the depth
changes in the direction of

(a) the x-axis
(b) the y-axis

Suppose the electrical potential V at the point (x, y, z)
is given by V = 100/(x% + y? +z?), where V is in
volts and x, y, and z are in inches. Find the instantaneous
rate of change of V with respect to distance at
(2, =1, 1) in the direction of

(a) the x-axis

(b) the y-axis

(c) the z-axis

An object is situated in a rectangular coordinate system
such that the temperature T at the point P(x, y, z) is
given by T = 4x% — y? + 1672, where T is in degrees
and x, y, and z are in centimeters. Find the instantaneous

rate of change of T with respect to distance at the point
P4, —2, 1) in the direction of

_ (a) the x-axis

53

(b) the y-axis
(c) the z-axis

When a pollutant such as nitric oxide is emitted
from a smokestack of height # meters, the long-range



concentration C(x, y) (in wg/ m3) of the pollutant at a
point x kilometers from the smokestack and at a height
of y meters (see figure) can often be represented by

a _ N2/ 42 _ 2,2
Clx, y) = —le™? O™ 4 7P,
x
where a and b are positive constants that depend on

atmospheric conditions and the pollution emission rate.
Suppose that

200 2
Clx, y) = _T[e—o.oz(y—lo)z/x +e—o.02(y+10)2/x2]_
X

Compute and interpret C/dx and dC/dy at the point
2, 5).

Exercise 53

54

55

The analysis of certain electrical circuits involves the

formula I = V/v/ R* + L*w?, where [ is the current, V
the voltage, R the resistance, L the inductance, and w a
positive constant. Find and interpret 3//8R and 3//0L.

Most computers have only one processor that can be
used for computations. Modern supercomputers, how-
ever, have anywhere from two to several thousand pro-
cessors. A multiprocessor supercomputer is compared
with a uniprocessor computer in terms of speedup. The
speedup S is the number of times faster that a given
computation can be accomplished with a multiprocessor
than with a uniprocessor. A formula used to determine §
is Amdahl’s law,

p

S(p, ¢) = ————,
P @) qg+p(—-9q)

where p is the number of processors and g is the
fraction of the computation that can be performed using
all available processors in parallel—that is, using them
in such a way that data are processed concurrently by
separate units. The ideal situation, complete parallelism,
occurs when g = 1.

(a) If g = 0.8, find the speedup when p = 10, 100, and
1000. Show that the speedup S cannot exceed 5,
regardless of the number of processors available.

56

57

58

59

60

CHAPTER 12 Partial Differentiation

(b) Find the instantaneous rate of change of § with
respect to g.

(c) What is the rate of change in part (b) if there is
complete parallelism, and how does the number of
processors affect this rate of change?

Refer to Exercise 55. The efficiency E of a multiproces-
sor computation can be calculated using the equation

_ S 1

p g+p1-q)’
Show that if 0 <g <1, E is a decreasing function
of p and therefore, without complete parallelism,

increasing the number of processors does not increase
the efficiency of the computation.

E

In the study of frost penetration in highway engineering,
the temperature T at time ¢ hours and depth x feet can
be approximated by

T = Tye M sin(wt — Ax),
where T, w, and A are constants. Assume thzit+the pe-
riod of sin(wt — Ax) is 24 hr.

(a) Find and interpret 8T /3¢ and 97T/ 3x.

(b) Show that T satisfies the one-dimensional heat
equation
oT _, 9T
o ax?
where k is a constant.

Show that any function given by
. S arp?,
w = (sinax)(cos by)e V& b2
satisfies Laplace’s equation in three dimensions:

Pw 8w
8y2 372

2

?w o

x>
The vital capacity V of the lungs is the largest volume
(in milliliters) that can be exhaled after a maximum
inhalation of air. For a typical male x years old and y
centimeters tall, V may be approximated by the formula
V =27.63y — 0.112xy. Compute and interpret

(@) dV/ax  (b) aV/dy
On a clear day, the intensity of sunlight / ()E, t) (in foot-
candles) at ¢ hours after sunrise and at ocean depth x (in

meters) can be approximated by

I(x, 1) = Le ™™ sin®(x1/ D),
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where I, is the intensity at midday, D is the length of the E’ Exer. 65-68: Use the following formulas with h = 0.01

day (in hours), and k is a positive constant. If [, = 1000,
D = 12, and k = 0.10, compute and interpret 3//9¢ and
81/0x whent =6 and x = 5.

61 In economics, the price elasticity of demand for a
commodity indicates the responsiveness of consumers
to a change in the market price of the commodity.
Suppose n commodities C;, C,, ..., C, have prices
PisPos-es Py respectively, and consumer demand for
C, is a function g, of p;, p,,...,p,. The price
elasticity of C, is the function e, defined by

Py 99,
€ =——.
q; 9p;
If, for each k,
—a —-a —a
a; =ka1 klp2 k2~~Pn kn’

where Qps Qs -+ Gy, and bk are nonnegative con-
stants, show that ¢, is a constant function.

62 Refer to Exercise 61. Commodity C, is said to be
independent of commodity C; if a change in price p,
does not affect demand q;- This is equivalent to the
condition dg; /8p, = 0. If g, has the form in Exercise
61, show that C, is independent of Cj if and only if
ay = 0.

Exer. 63 -64: Use Theorem (12.10).

63 Let C be the trace of the paraboloid z =9 — x“ — y?
on the plane x = 1. Find parametric equations of the
tangent line [ to C at the point P(1, 2, 4). Sketch the
paraboloid, C, and /.

2

64 Let C be the trace of the graph of the equation z =

V36 —9x% — 4y2 on the plane y = 2. Find parametric

equations of the tangent line / to C at the point
P(1,2,+/11). Sketch the surface, C, and /.

to approximate f, (0.5, 0.2) and £,(0.5, 0.2), and compare
the results with the values obtained from f (x, y) and
fy(x9 y)'
fex+hy-fx—hy

2h

fx,y+h—f(x,y—h)
2h

fi(x )~

fap~

65 f(x, y) = y*sin(xy)

66 f(x,y)= xy3 —f—4x3y2
x2y2
3x2 + y2

68 f(x,y) ==

67 f(x,y)=

E Exer. 69-70: Use the following formulas with h = 0.01

to approximate f, (0.6, 0.8) and fyy(0.6, 0.8).
f(x+h,}’)—2f(x,.l’)+f(x_hs)’)

Ju(6 Y = o)
Nf(x,)’+h)—2f(x5}’)+f(xa}’*h)

fyy(x’ )’) ~ h2

69 f(x,y) = secz[tan(xyz)]sin(xy)

3 4 xy?

70 fix,y)=—"—"—"—53
tan(xy) + 4)c2y3

12.4  INCREMENTS AND DIFFERENTIALS

HiEpivigse  We continue, in this section, to consider differentiation of real-valued func-

tions of two or three variables. We introduce increments and differentials
and develop a definition of differentiability for functions of two variables.
If f is a function of two variables x and y, then the symbols Ax and Ay
denote increments of x and y. Note that Ay is an increment of the indepen-
dent variable y and is not the same as that defined in (2.30) for a dependent
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Fe& ¥ £, ¥ 2. Vi) 8,(cp i) ! Ax, Ay

1 1 —0.87758256 1 0.27725783 0.22274217

1.55451565 | 1.44548435 | —0.71283938 1 | —0.03695719 | —0.04775939

1.48060127 | 1.34996558 | —0.73826581 1 | —0.00121442 | —0.00136946

147817243 | 134722665 @ —0.73908440 1 | —0.00000108 | —0.00000130

147817027 | 1.34722406 | —0.73908513 1 000000000 | 0.00000000 |
| A i

From the table,
(x5, y5) ~ (0.73908513, 0.67361203).

An approximation to the solution corresponding to the point in the third
quadrant in Figure 12.37 is, by symmetry, (—xs, —ys).

- EXERCISES 12.4
.

Exer. 1-2: If Ax and Ay are increments of x and y, find
(a) Aw, (b) dw, and (c) dw —Aw.
lw=5y2-xy 2w=xy—y2+3x

Exer. 3—6: Find expressions for ¢; and ¢, that satisfy
Definition (12.16).

3 f(x,y) =4y2 —3xy+2x

4 f(x, y) = (2x - y)?

6 f(x,y) =2x>—xy* +3y
Exer. 7-18: Find dw.

7 w:x3—x2y+3y2
3/2

5 f(x, y)=x>+°

8 w=5x2+4y—3xy3

10 w =ye_2x — 3x*

9 w=x25iny+2y
I w=x%" +(1/y%
@w =In(x>+y*) +xtan"'y
13 w=x*In(y?+2%) 14 w=x*yz74+e %
xyz
xX+y+z
17 w =x2z+4yt3 —xZ%t 18 w =x2y3zt‘1v4

I5 w= 16 w=x%"?+ylnz

Exer. 19 -22: Use differentials to approximate the change
in f if the independent variables change as indicated.

f(x’ M =x" =30y +4x -2y’ + 6,
(=2, 3) to (—2.02, 3.01)

20 f(x, y) = x> —2xy +3y; (1, 2) to (1.03, 1.99)

21 f(x, y, 2) = x22° = 3y22 +x 3 +2y1/2;
(1, 4, 2) to (1.02, 3.97, 1.96)

22 f(x,y, 2) =xy+xz+yz;
(-1, 2, 3) to (—0.98, 1.99, 3.03)

23 The dimensions of a closed rectangular box are
measured as 3 ft, 4 ft, and 5 ft, with a possible error
of :t% in. for each measurement. Use differentials to

approximate the maximum error in the calculated value
of

(a) the surface area (b} the volume

24 The two shortest sides of a right triangle are measured
as 3 cm and 4 cm, respectively, with a possible error
of £0.02 cm in each measurement. Use differentials to
approximate the maximum error in the calculated value
of

(a) the hypotenuse ~ (b) the area of the triangle

25 The withdrawal resistance of a nail indicates its holding
strength in wood. An empirical formula used for bright,
common nails is P = 15,700S5/2RD, where P is the
maximum withdrawal resistance (in pounds), S is the
specific gravity of the wood at 12% moisture content, R
is the radius of the nail (in inches), and D is the depth
(in inches) to which the nail has penetrated the wood.
A 6d bright, common nail of length 2 in. and diameter
0.113 in. is driven completely into a piece of Douglas fir
that has a specific gravity of 0.54.



1020

26

27

28

29

30

3l

32

(a) Approximate the maximum withdrawal resistance.
(In applications, only one sixth of this maximum is
considered safe for extended periods of time.)

(b) When nails are manufactured, R and D can vary by
+2%, and the specific gravity of different samples
of Douglas fir can vary by £3%. Approximate the
maximum percentage error in the calculated value
of P.

The total resistance R of three resistances R, R,, and
R, connected in parallel is given by

1 1 n 1 + 1

R R, R, R,
If measurements of R;, R,, and R are 100, 200, and
400 ohms, respectively, with a maximum error of £1%
in each measurement, approximate the maximum error
in the calculated value of R.

The specific gravity of an object more dense than water
is given by s = A/(A — W), where A and W are the
weights (in pounds) of the object in air and water,
respectively. If measurements are A =12 1b and W =
5 1b, with maximum errors of i% oz in air and £1 oz in
water, what is the maximum error in the calculated value
of s?

The pressure P, volume V, and temperature T (in °K)
of a confined gas are related by the ideal gas law
PV = kT, where k is a constant. If P =0.5 1b/in®
when V =64in® and T =350°K, approximate the
change in P if V and T change to 70 in® and 345 °K,
respectively.

Suppose that when the specific gravity formula s =
A/(A — W) is used (see Exercise 27), there are percent-
age errors of £2% and +4% in the measurements of
A and W, respectively. Express the maximum percent-
age error in the calculated value of s as a function of A
and W.

Suppose that when the ideal gas law PV =kT is
used (see Exercise 28), there are percentage errors of
+0.8% and £ 0.5% in the measurements of 7 and P,
respectively. Approximate the maximum percentage
error in the calculated value of V.

The electrical resistance R of a wire is directly
proportional to its length and inversely proportional to
the square of its diameter. If the length is measured with
a possible error of 1% and the diameter is measured
with a possible error of 3%, what is the maximum
percentage error in the calculated value of R?

The flow of blood through an arteriole is given by
F = 7 PR*/(8vl), where [ is the length of the arteriole,
R is the radius, P is the pressure difference between the

33

34

35
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two ends, and v is the viscosity of the blood (see Section
5.8). Suppose that v and / are constant. Use differentials
to approximate the percentage change in the blood flow
if the radius decreases by 2% and the pressure increases
by 3%.

The temperature T at the point P(x, y, z) in an xyz-
coordinate system is given by

T = 8(2x% + 4y% + 92%)1/2,

Use differentials to approximate the temperature differ-
ence between the points (6, 3, 2) and (6.1, 3.3, 1.98).

Approximate the change in area of an isosceles triangle
if each of the two equal sides increases from 100 to
101 and the angle between them decreases from 120° to
119°.

If a mountaintop is viewed from the point P shown in
the figure, the angle of elevation is «. From a point Q
that is a distance x units closer to the mountain, the angle
of elevation is 8. From trigonometry, the height 4 of the
mountain is given by

_ x

" cota —cotf’
A surveyor measures « and 8 to an accuracy of 30”
(approximately 0.000145 radian). Suppose that o =
15°, B =20°, and x = 2000 ft. Use differentials to
estimate, to the nearest 0.1 ft, how accurate the length

measurement must be so that the maximum error in the
calculated value of % is no greater than +10 ft.

Exercise 35

36 If a drug is taken orally, the time T at which the largest

amount of drug is in the bloodstream can be calculated
using the half-life x of the drug in the stomach and the
half-life y of the drug in the bloodstream. For many
common drugs (such as penicillin), 7 is given by

_ xy(Inx —Iny)
T (x—y)In2
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For a certain drug, x =30 min and y =1 hr. If the
maximum error in estimating each half-life is +10%,
find the maximum error in the calculated value of T.

37 Assume that the cylinder described in Example 4 has a
closed top and bottom. Use differentials to approximate
the maximum error in the calculated total surface area.

38 Use differentials to approximate the change in surface
area of the box described in Example 6. What is the

exact change?

Let
xXyz

fx, y,2) = if (x, y, 2) # (0, 0, 0)

By
0 if (x, y, z) = (0, 0, 0)
(a) Prove that f,, f,, and f, existat (0, 0, 0).

(b) Prove that f is not differentiable at (0, 0, 0).

Exer. 43 —44: Refer to Example 7. Use Newton’s method
to approximate a solution of the system of equations to
four decimal places using the given first approximation.

Exer. 39-40: Prove that f is differentiable throughout 2 )
its domain. Yy
XY= G-D" OG+D
X+ =1
Y 10 + 5
xX+y+z 2 2
0 fx,y,)=—5—"F5— x
Sy X2+ y? 42 E+y7:l
44 (x), y) = (-15, =1.5)
41 Let a-p? - U
2 3
—2—y2" if (x, y) # (0, 0) 45 Derive Newton’s method for a system of three equations,
f,y)=1x"+y
0 if (x, y) = (0, 0) J =0
V= ’ g(x! Y, Z) =0
h(x,y,2) =0

(a) Prove that f, (0, 0) and fy (0, 0) exist. (Hint: Use

Definition (12.8).)

(b) Prove that f is not continuous at (0, 0).
(<) Prove that f is not differentiable at (0, 0).

where f, g, and h are functions of three variables.
Express the solution in a matrix form similar to (2) on
page 1017.

CHAIN RULES

If f and g are functions of one variable such that
w=f(u) and u=g(x),
then the composite function of f and g is given by

w = f(gx)).
Applying the chain rule (2.26), we may find the derivative of w with
respect to x as follows:
dw  dw du
, dx  du dx
In this section, we shall extend this formula to functions of several vari-

ables.
Let f, g, and k be functions of two variables such that

w= f(u,v), with u=g(x,y), v=nh(x,y).
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PROOF The statement F(x, y, z) = 0 determines a function f such
that 7 = f(x,y) means that F(x, y, f(x,y)) = 0 for every (x, y) in the
domain of f. Consider the composite function F of x and y defined as
follows:

w=Fu,v,z), where u=x, v=y, z=f(x,y).

Note that u and v are functions of x and y, since we can write u and v as
u=x-+(0-y)and v =y + (0-x). Referring to the diagram in Figure

Figure 12.46 12.46 and considering the branches that lead from w to x, we obtain
/x dw dwdu wdv  Owdz
u dx Qudox dvax Oz dx
\ y Since w = F(x, y, f(x, y)) = 0 for every x and every y, it follows that
dw/dx = 0. Moreover, since du/dx = 1 and dv/dx = 0, our chain rule
X formula for dw/dx may be written
w < 0=y Mgy 2%
\ y ax ay 0z ox’
and if dw/dz # 0,
/ x 0z ow/ox _ F(x,y,2)
z ox  w/dz  F(x,y,2)
\ y The formula for 3z/3dy may be obtained in similar fashion. ==

EXAMPLE®=6é Find 9z/0x and dz/dy if z = f(x, y) is determined
implicitly by

x4+ xy? =7 +4yz—-5=0.
SOLUTION If we let F(x,y, z) denote the expression on the left
side of the given equation, then, by Theorem (12.23),
0z 2x7% + y?

ax 2x%z — 3% + 4y

az 2xy +4z

3y 2xPz—37 44y

- EXERCISES 12.5

Use a chain rule in Exercises 1-14.
Exer. 1-2: Find w/0x and 6w/ 3y. Exer. 3-4: Find ow/dr and ow/ ds.

@w:usinv; u=x2+y2, v=xy 3 w=u2+2uv; u=rlns, v=2r+s

2.

2 w=uv+v°;, u=xsiny, v=ysinx 4 w=¢e": t=r+s, v=rs
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Exer. 5—-6: Find dz/6x and 9z/9dy.

5 z=r3+s+v2;

r=uxe’, s = ye*, 2

v=xy

6 2= pg+qu,
p=2x—y, g=x-2y, w=-2x+2y

Exer. 7-8: Find dr/du, ar/ov, and ar/ot.

7 r=xlny; x = 3u + vt,

8 r= wchSZ;

y = uvt

w=ulvt, z=ut

9 If p=u’+3v>—4uw? where u=x—3y+2r—s,
v=2x+y—r+2s, and w=—-x+2y+r+s, find
dp/or.

10 Find 0s/0y if s = tr +ue’, wheret = xyzz, r= xzyz,

u= xyzz, and v = xyz.

Exer. 11-14: Find dw/dt.

3 1 t

Hw=x~y%  x= eI

2 w=huw+v); w=e?, v= -1

13 w=r2—stanv; r=sin2t, s=cost, v=4t

14 w=x2y’z% x=24+1, y=3t-2,
z=5t+4

Exer. 15-18: Use partial derivatives to find dy/dx if
y = f(x) is determined implicitly by the given equation.

15 2x3+x2y+y3=1

16 x4+2x2y2—3xy3+2x=0
@6x+ﬁ§=3y—4

18 x23 4?3 =4

Exer. 19-22: Find 8z/0x and 8z/dy if z = f(x, y) is
determined implicitly by the given equation.

19 2xz2° —3y2 +x%y2 + 47 =0
xz2 + 2x2y - 4y2z +3y-2=0

21 xe?* —2ye*? +3z¢% =1

22 yx2 +22 4 cosxyz =4

Exer. 23-32: Use a chain rule.

23 The radius r and altitude & of a right circular cylinder
are increasing at rates of 0.01 in./min and 0.02 in./min,
respectively.

(a) Find the rate at which the volume is increasing at the
time when r =4 in. and 2 = 7 in.

(b) At what rate is the curved surface area changing at
this time?

24

25

27

28

29

30

31

The equal sides and the included angle of an isosceles
triangle are increasing at rates of 0.1 ft/hr and 2°/hr,
respectively. Find the rate at which the area of the
triangle is increasing at the time when the length of each
of the equal sides is 20 ft and the included angle is 60°.

The pressure P, volume V, and temperature T of a
confined gas are related by the ideal gas law PV = kT,
where k is a constant. If P and V are changing at the
rates dP/dt and dV/dt, respectively, find a formula for
dT/dt.

If the base radius r and altitude A of a right circular
cylinder are changing at the rates dr/dr and dh/dt,
respectively, find a formula for dV/dt, where V is the
volume of the cylinder.

A certain gas obeys the ideal gas law PV = 8T.
Suppose that the gas is being heated at a rate of 2°/min
and the pressure is increasing at a rate of % (Ib/in®)/min.
If, at a certain instant, the temperature is 200° and the
pressure is 10 1b/in?, find the rate at which the volume is
changing.

Sand is leaking from a hole in a container at a rate of
6 in’/min. As it leaks out, it forms a pile in the shape of
a right circular cone whose base radius is increasing at a
rate of }‘ in./min. If, at the instant that 40 in® has leaked
out, the radius is 5 in., find the rate at which the height
of the pile is increasing.

At age 2 yr, a typical boy is 86 cm tall, weighs 13 kg,
and is growing at the rate of 9 cm/year and 2 kg/year.
Use the DuBois and DuBois surface area formula,
§ = 0.007184x%425y0725 for weight x and height y,
to estimate the rate at which the body surface area is
growing (see Exercise 59 of Section 12.1).

When the size of the molecules and their forces of
attraction are taken into account, the pressure P, volume
V, and temperature 7 of a mole of confined gas are
related by the van der Waals equation,

a
(P+—‘7) (V—=>0) =kT,

where a, b, and k are positive constants. If ¢ is time,
find a formula for dT/dt in terms of dP/dt, dV/dt,
P, and V.

If n resistances R, Ry,..., R are connected in
parallel, then the total resistance R is given by

1 &l

R =R,
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Prove thatfork =1, 2,..., n,

R (R’
R, \R,/)

32 A function f of two variables is homogeneous of degree

nif f(tx, ty) = 1" f(x, y) forevery t such that (tx, ty)
is in the domain of f. Show that, for such functions,
xf (x, y) + yfy(x, y) = nf(x, y). (Hint: Differentiate
f(tx, ty) with respect to ¢.)

Exer. 33 -36: Refer to Exercise 32. Find the degree n of
the homogeneous function f and verify the formula

xf(x, ) +y£,(x, y) = nf(x, ).

33 f(x,y) = 2x3—f-3x2y+y3

34 f(x!y)= 2

x3y
X +y2

35 f(x,y) = arctanZ
X

36 f(x, y) = xye¥/*

If w= f(x, y), where x =rcosf and y = rsin#é,

show that
_ aw\ 2 + 1 [ow)?
“\or 2\ )

G+ (5)

38 If w= f(x, y), wherex = e" cosf and y = ¢ sin8,

show that
2w 8w _or Pw 8w
Stz =e St ==
0x ay or a6

39 If w= f(x, y), where x =rcosf and y = rsin6,

e

- AhAYE

show that
Pw 8w _ 8%w 10%w 10w
ax?  3y? at  rrae?  ror’

40

4]

42

43

44

45

46

CHAPTER 12 Partial Differentiation

Ifv= f(x —at)+ g(x +at) and f and g have second
partial derivatives, show that v satisfies the wave
equation

3%v 9 9%v
ar? ax?
(Compare with Exercise 42 of Section 12.3.)

=a

If w=cos(x + y)+ cos(x — y), show, without using
addition formulas, that W, =W, = 0.

Ifw = f(x? + y?), show that y(3w/dx) — x(dw/dy) =
0. (Hint: Letu = 2+ yz.)

If w= f(u, v), where u = g(x, y) and v = k(x, y),

show that
82w _ 3w [ du 2+ 32w n 3%w \ du v
ax2 - ou? \ox ovou Ou ov/ ox ox
Pw (w\> owdiu  dw d%v
ov ox ou 9x v 9x

For w, u, and v as given in Exercise 43, show that

Pw  FPwouou 3w owdv | Pw dud
dy ox  oul dx dy | 0v du ax dy | du dv dy ax
Pwovdv dw 0%u dw 8%v
9v2 ax dy | Ou dy ox | Qv dy ax
Suppose that u = f(x, y) and v = g(x, y) satisfy the
Cauchy-Riemann equations u, = v,and u, = —v,. If
x = rcosf and y = rsin#, show that
du 1ov v 1 du
o roo o roo

If u=y/G2+ y?) and v = x/(x* + yz), verify the
formulas for du/dr and dv/dr in Exercise 45 directly,
by substituting r cos & for x and rsiné for y and then
differentiating.

DIRECTIONAL DERIVATIVES

In Section 12.3, we discussed the fact that if f(x, y) is the temperature
of a flat metal plate at the point P(x, y) in an xy-plane, then the partial

derivatives f (x, y) and fy (x, y) give us the instantaneous rates of change
of temperature with respect to distance in the horizontal and vertical di-
rections, respectively (see Figures 12.28 and 12.29). In this section, we
generalize this fact to the rate of change of f(x, y) in any direction.
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(b) A normal to edge A B is j. In this case, A B is insulated if and only if

. . aT
VT -j=0 or, equivalently, 5 =0;

that is, the rate of change of 7 in the vertical direction is 0.

- EXERCISES 12.6

Exer. 1-6: Find the gradient of f at P.

I flx, y)= \/x2 +y% P(-4, 3)

2 f(x,y)=Ty—5x P(2, 6)

3 f(x, y)=eFtany; P(0, m/4)
4 f(x,y)=xln(x—-y); PG5, 4

5 f(x, y,2) =y —=2x% P2, -3, 1)
6 f(x,y, 2) =xy*e; P2, —1,0)

Exer. 7-10: Use (12.24) or (12.30) to estimate the
directional derivative of f at P in the indicated direction
with s = 0.02, 0.01, and 0.005.
x3 tanh(x +y)

7 f(x,y)= ;
4+x2+y2

I5 f(x, y) = /9% —4y* — 1

P2, 5),

a=+2i+/3j

8 flx, y)= xIn(5x% + 4xy + y%);

P(/5, 3), a = —0.8% + 1.75]
9 fx,y,2)= yze(za"’sxy) + 6x2yz;
P, 1.2, =2.5), a=3.7i+1.9j-2.1k
3 .
x” sinh(xyz)
10 f(x, Yy, z) = ﬁ’
I1+y“+z
P(-1, 2, 1), a=2i—j+4k

Exer. 11-24: Find the directional derivative of f at the
point P in the indicated direction.

I f(x, y)=x2—5xy+3y2;

P@3, —1), u=(2/2)(i+j)
12 f(x, y) =x° —3x%y — y%

P(1, =2), u=j3(-i++3j)
13 f(x, y) =arctan§;

P4, —4), a=2i-3j
14 f(x, y) =x’Iny;

PG5, 1), a=—i+4j

X—Yy
16 L y) = —2;
fx, y) Ty
P2, 1), a = 3i+4j
17 f(x, y) = xcos® y;
P(2’ ]T/4)’ a= (57 1)
18 f(x, y) =xe¥;
P(4v 0)7 a= <—1, 3)
19 f(x,y, 2) = xy°2%
20 fx, v, 2) = x* 4+ 3yz + 4xy;
@f(X, ¥, 2) =27
P(-1,2,3), a=3i+j-5k
22 f(x, y, 2) = /xysing;
23 f(x,y,2) =&+ +2);
P(S’ 7» 1), a= (*3, 0, 1)
24 f(x, y,2) = tan ' (x 4 y);
P(O, Oa 4)a a= (6, 0, 1)

Exer. 25 -28: (a) Find the directional derivative of f at P
in the direction from P to Q. (b) Find a unit vector in the
direction in which f increases most rapidly at P, and find
the rate of change of f in that direction. (c) Find a unit
vector in the direction in which f decreases most rapidly
at P, and find the rate of change of f in that direction.

25 f(x, y) = x2e %, P2, 0), 0(-3, 1)
26 f(x, y) =sin(2x — y);
P(-n/3, n/6), Q(0, 0)

27 f(x, y, 2) =\/x2+y2+zz;

P(-2,3, 1), =5, 4)

Q(0,
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f(x, wo=2-2

29

30

31

32

P, —-1,2), Q@3, 1, -4

y z

A ‘metal plate is located in an xy-plane such that the

temperature T at (x, y) is inversely proportional to the

distance from the origin, and the temperature at P (3, 4)

is 100 °F.

(a) Find the rate of change of T at P in the direction of
i+j.

(b) In what direction does T increase most rapidly at P?

(c) In what direction does T decrease most rapidly at
pP?

(d) In what direction is the rate of change 07

The surface of a lake is represented by a region D in

the xy-plane such that the depth (in feet) under the point

(x, y)is f(x, y) = 300 — 2x% — 3y2.

(a) In what direction should a boat at P(4, 9) sail in
order for the depth of the water to decrease most
rapidly?

(b) In what direction does the depth remain the same?

The electrical potential V at (x, y, z) is
V=x>+ 4y2 + 922

() Find the rate of change of V at P(2, —1, 3) in the
direction from P to the origin.

(b) Find the direction that produces the maximum rate
of change of V at P.

(c) What is the maximum rate of change at P?

The temperature T at (x, y, z) is given by
T =4x* — y2 + 1622

(a) Find the rate of change of T at P(4, —2, 1) in the
direction of 2i 4 6j — 3k.

(b) In what direction does T increase most rapidly at P?
(c) What is this maximum rate of change?

(d) In what direction does T decrease most rapidly at
P?
(e) What is this rate of change?

Exer. 33-34: Refer to the discussion that precedes
Example 6. In each case, T is the temperature at (x, y).

33

Shown in the figure is a semicircular region R.

(a) Use polar coordinates to show that the upper bound-
ary AB is insulated if and only if 87/dr = 0.
(Hint: Show that if T = f(x, y), with x = rcos6
and y =rsin6, then 9T/0r = (dT/dx)cos6 +
(8T/3y) sinf.)

(b) Interpret 87/9r as a rate of change of T.

Exercise 33

34 Shown in the figure is a circular sector whose boundary

E35

36

AB is insulated.

(a) Use polar coordinates to show that the insulation
condition is equivalent to 37//8¢ = O for every point
on the segment A B.

(b) Interpret 97/ as a rate of change of T.

Exercise 34

=Y

In some applications, it may be difficult to directly cal-
culate the gradient V£ (x, y). The following approxi-
mations are sometimes used for the components, where
h=0:

%f(x-f_h’ }’)_f(x_h, }’)
2h

LSy Em = (Y =)
2h

fi(x, )

[y )

(a) Show that these approximations improve as h — 0.

(b) If f(x, y) = x3/(1 + y), approximate V £(1, 2) us-
ing h = 0.01 and compare the approximation with
the exact result.

An analysis of the temperature of each component is
crucial to the design of a computer chip. Suppose that
for a chip to operate properly, the temperature of each
component must not exceed 78 °F. If a component is
likely to become too warm, engineers will usually place
it in a cool portion of the chip. The designing of chips
is aided by computer simulation in which temperature
gradients are analyzed. A computer simulation for a new
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chip has resulted in the temperature grid (in °F) shown IE[ Exer. 37-38: Extend the approximation formulas in

in the figure.

(a) If T'(x, y) is the temperature at (x, y), use Exercise
35 with A = 1 to approximate VT (3, 3).

(b) Estimate the direction of maximum heat transfer at
(3, 3).

(c) Estimate the instantaneous rate of change of T in the
direction of a = —i + 2j at (3, 3).

Exercise 36

y (mm)

Temperature grid (°F)

65

1 2 3 4

x (mm)

Exercise 35 to the first partial derivatives of f(x, y, 2),
and then use h = 0.01 to approximate the directional
derivative of f at P(1, 1, 1) in the direction of u.

2 .
x“sinytanz . .
37 f(x, 9, 0) = —5—57 u=—(>{+j+k)
x3+y224 V3
4 2.2
x4 3x°z 1
38 f(x,y,2)=—F55——; u=—QRi—-j+k
@y 4x%y? + cosh(yz) \/8( Itk

Exer. 39-44: If u = f(x, y), v = g(x, y), and f and g are
differentiable, prove the identity.

39 V(cu) =cVu
40 V(u +v) = Vu + Vv
41 V(uv) =uVv+vVu

Vu—-uVv
42V(£)=v u—uVv

v U2

for a constant ¢

with v # 0

43 Vu" =nu""!' Vu for every real number n

d
44 Tf w = h(u), then Vv = d—w Vi
U

45 Let u be a unit vector and let 6 be the angle, measured in
the counterclockwise direction, from the positive x-axis
to the position vector corresponding to u.

(a) Show that
D,f(x,y) = f,(x, ) cos@+fy(x, y) sin6.
(b) If f(x,y) = x*+2xy — y* and 6 = 57/6, find
D,f(2,-3).

46 Refer to Exercise 45. If f(x, y) = (xy + y»)4and 6 =
n/3, find D, (f(2, —1)).

47 Suppose that w = f(x, y), x = g(t), y = h(t), and all
functions are differentiable. If r(z) = xi + yj, prove that

dw _ Vw - (1)
dr '

TANGENT PLANES AND NORMAL LINES

In this section, we use the gradient of a function to study tangent planes
to surfaces in three-dimensional space and their associated normal lines.

Suppose that a surface S is the graph of an equation F(x,y,z) = 0 and
that F has continuous first partial derivatives. Let Py(x,, ¥, Z,) be a point
on S at which F,, F,, and F, are not all zero. A tangent line to S at 7, is,
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Figure 12.68 (b) The graph of f (that is, of z = x> + 2y?) is an elliptic paraboloid (see
Figure 12.68). The level curve x*+2y? =11inthe xy-plane corresponds
to the trace of the paraboloid on the plane z = 11. The maximum rate
of change of f(x,y) occurs if the point (x, y) in the xy-plane moves
in the direction of Vf(3, 1) at P(3, 1). This movement corresponds to
movement of the point (x, y, f(x, y)) up the steepest part of the paraboloid
at 0(3, 1, 11).

Tangent planes can be used to obtain successive approximations to a
solution of a system of two nonlinear equations, f(x, y) =0, g(x,y) =0
from a first approximation (x;, y;) by performing the following steps.

Step | Use Theorem (12.35) to find equations of the tangent planes to the
graphs of f and g at the points (x, y;, f(x;, y;)) and (x;, y;, g(x;, ¥1))-
Step 2 Find the trace in the xy-plane of each tangent plane in step (1).
Step 3 Find the point of intersection (x,, y,) of the traces found in step
).

Step 4 Take (x,, y,) as a second approximation and repeat steps (1)—(3).

This process is a geometric description of Newton’s method, discussed
at the end of Section 12.4.

- EXERCISES 12.7

Exer. 1-10: Find equations for the tangent plane and the 13 F(x, y)=x%—y; P(-3,5)
normal line to the graph of the equation at the point P. 14 £(x, y) = xy; PG, 2)
®4x —y 432 =10; P2, -3, 1) Exer. 15-20: Sketch both the level surface S of F that
2 9x% — 4y — 257% = 40, P4, 1, =2) contains P and VF]p.
3z =4x%+9y% P(-2, —1, 25) I5 F(x, y,2) =x*+y*+27% P(1,5,2)
4 7 =4x? - y% P(5, —8, 36) 16 F(x,y,2) =z—x*—y% P2, =21
5 xy+2yz —xz>+ 10 =0; P(-5,5, 1) 17 F(x, y,2) =x+2y+3z; P3,4,1)
6 > —2xy+22+7y+6=0, P(l,4, -3) 18 F(x,y,2) =x’+y*—2% P@3, -1, 1)
7 z=2¢*cosy; P, n/3, 1) 19 F(x, y, 2) = x>+ y?; P(2, 0, 3)
8 z=Inxy; P(%, 2, 0) 20 F(x, y,2)=2; P(2,3,4)
9 x—1n l PO, 2. 1) Exer. 21 -24: Prove that an equation of the tangent plane
27 T to the given quadric surface at the point Py(x,, ¥y, z)
10 xyz —4xz° + 3% = 10; P(—1,2, 1) may be written iu the indicated form.
2 2 2
Exer. 11-14: Sketch both the level curve C of f that a4 X g o Yo FRo _
contains P and Vf]p. a> b a* b* c?
I fx, y)=y2—x% P2, 1 2 2 2
fop=y-x @D 22 oy o Do, Z,
12 f(x, y) =3x —2y; P(=2, 1) a b c a b c
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23 x? y? 22 _1 XXo Yo %y are orthogonal. Show that the graphs of F(x, y, z) =

2 B 2 7 22y 2T 0 and G(x, y, z) =0 (where F and G have partial
2 2 derivatives) are orthogonal at P if and only if

24 = 10—y 2xx0~l~2—y¥9—c(z—i-z)
a2 b2 ’ ) 2 0 F,G,+F,G,+FG, =0.

25 Find the points on the hyperboloid of two sheets with 30 Rzefer “2) Exe;cise 29. Prove that the sphere with equation
equation x* —2y? —4z> = 16 at which the tangent P24y 4 =d and the cone x? + Y- =0are
plane is parallel to the plane 4x — 2y + 4z = 5. orthogonal at every point of intersection.

26 Show that the sum of the squares of the x-, y-, and [3 Exer. 31—3.4: For the given system of equations and
z-intercepts of every tangent plane to the graph of the first approximate solution (x,, y,), use Newton’s method
equation X234 23 4 28 a2/3 is the constant @2. as outh:ned 'at the end of the section to find two more

approximations.

27 Prove that every normal line to a sphere passes through s 3 P

31 x* -y’ =0, x“4+y°=3=0; (1.3, 1.1)

the center of the sphere.
; 2_ .2 .
28 Find the points on the paraboloid z = 4x? + 9y? at 32 sinx —cosy =0, x"—-y"—-13=0; (12, 03)
. L ) .
which the normal line is parallel to the line through 33 279 _1 =0, dry—xt—y* = 0. (08, 02)

P(-2, 4, 3) and Q(5, —1, 2).
. . - 2 2 . .
29 Two surfaces are said to be orthogonal at a point 34 2sinxsiny —1=0, y*—x"+1=0; (1.1, 065

of intersection P(x, y, z) if their normal lines at P

EXTREMA OF FUNCTIONS OF SEVERAL VARIABLES

In Chapter 3, we discussed local and absolute extrema for functions of one
variable. In this section, we extend these concepts to functions of several
variables.

A function f of two variables has a local maximum at (a, b) if there
is an open disk R containing (a, b) such that f(x, y) < f(a, b) for every
(x, y) in R. The local maxima correspond to the high points on the graph
S of f, as illustrated in Figure 12.69. Similarly, the function f has a local
minimum at (c, d) if there is an open disk R containing (c, d) such that
f(x,y) > f(c,d) for every (x, y) in R. The local minima correspond to
the low points on the graph of f, as illustrated in Figure 12.70.

Figure 12.69 Local maximwm f(a, b) Figure 12.70 Local minimum f(c, d)
Az Az

»

fla, b)1 | fx, »)

(a, b, O)’_l:|\
e L\) y

R™""G y 0
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Let 9 be the angle between the vectors
_9 3 3 e 3 .
PlP:(x—x1)1+(y—y1)J and PP = (x —x)i+ (y — »)J
Applying Corollary (10.20) and using (*), we have

—_— —

P P-PP 1

cosf = ——=—— = —5
I 2y PPy Pl

Hence, 6 = arccos —%) = 120°. By symmetry, the angles between Fl—ﬁ

— — — . .
and P, P and between P, P and P; P must also equal 120°, as illustrated in
Figure 12.76.

Figure 12.76
A}y
Ps(x3, y3)

120°

120°

// 120° TS Py(xy, v2)

/7

Py(x;, y1)

The discussion in this section can be generalized to functions of more
than two variables. For example, given f(x, y, z), we define local maxima
and minima in a manner analogous to that used for the two-variable case.
If f has first partial derivatives, then a local extremum can occur only at
a point where f,, f,, and f, are simultaneously 0. It is difficult to obtain
tests for determining whether such a point corresponds to a maximum, a
minimum, or neither. However, in applications we can often determine this
by analyzing the physical nature of the problem.

Exer. 1-20: Find the extrema and saddle points of f.

I fx, )=—x>—dx—y*+2y—1
2 f(x,y)=x*-2x+y>—6y+12

3 fx, y)=x2+4y2—x+2y
4 f(x, y)=5+4x—2x2-+—3y—y2
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5 f(x, y) = x% + 2xy + 3y?

6 f(x, y)=x2—3xy—y2+2y—6x

T flx,y)=x+3xy—y

8 f(x, y)=x"+xy

9 f(x, y)=%x2+2xy—%y2+x-8y

10 f(x, y) = —2x* — 2xy — 3y* — 14x — 5y
Hn fx, y=
12 f(x, ) =32 + 1y = 3x% — 4y
@f(x, y)=éx“—Zx"’+4xy-%—y2
14 f(x, y) = +x* +4xy — 9x — y?

x3—%y3+%x2—6x+32y+4

—_ W

15 f(x, y)=x*+y3+32x -9y
16 f(x, y) = —4x> +xy+ 3y* — 12y
17 f(x, y)=¢€"siny
18 f(x, y)=uxsiny
4y +x2y% +8x
Xy

19 f(x, y)=

X
x+y
21 Shown in the figure is a graph of

20 f(x, y)=

Fx,y) = (2 +3yHe &),

Show that there are five critical points, and find the
extrema of f.

Exercise 21 Az

22 Shown in the figure is a graph of

f(x, y) = xy2e” @4

(a) Show that there is an infinite number of critical
points.

(b) Find the coordinates of the four critical points shown
in the figure.

Exercise 22

Exer. 23 - 28: Find the maximum and minimum values of
f on R. (Refer to Exercises 3-8 for local extrema.)

23 f(x, y) = x> +4y* — x +2y;
the region R bounded by the ellipse x* + 4y? = 1
24 f(x, y)=5+4x —2x* +3y — y%

the triangular region R bounded by the lines y = x,
y=—x,andy =2

25 f(x,y) =x2+2xy+3y2;
R={(x,y):-2=<x<4,-1<y=<3}

26 f(x, y) = x> —3xy — y* + 2y — 6x;
R={(x, y):|x| <3, |y <2}

@f(x, y) = x> +3xy -y

the triangular region R with vertices (1, 2), (1, —2),
“and (-1, —2)

28 f(x, y) = x> +xy,
the region R bounded by the graphs of y = x* and y=9

29 Find the shortest distance from the point P(2, 1, —1) to
the plane 4x — 3y +z = 5.

30 Find the shortest distance between the parallel planes
2x+3y—z=2and2x +3y —z=4.

31 Find the points on the graph of xy3z2 = 16 that are
closest to the origin.

32 Find three positive real numbers whose sum is 1000 and
whose product is a maximum.



33

34

35

36

37

38

39

40

If an open rectangular box is to have a fixed volume V,
what relative dimensions will make the surface area a
minimum?

If an open rectangular box is to have a fixed surface
area A, what relative dimensions will make the volume
a maximum?

Find the dimensions of the rectangular box of maximum
volume with faces parallel to the coordinate planes that
can be inscribed in the ellipsoid

16x2 + 4y + 972 = 144,

Generalize Exercise 35 to any ellipsoid
2 2 2
x y b4
- +>5+—5=L
a> b 2

Find the dimensions of the rectangular box of maximum
volume that has three of its faces in the coordinate
planes, one vertex at the origin, and another vertex in
the first octant on the plane 4x + 3y + z = 12.

Generalize Exercise 37 to any plane
LN
a b ¢

where a, b, and ¢ are positive real numbers.

A company plans to manufacture closed rectangular
boxes that have a volume of 8 ft>. Find the dimensions
that will minimize the cost if the material for the top and
bottom costs twice as much as the material for the sides.

A window has the shape of a rectangle surmounted by
an isosceles triangle, as illustrated in the figure. If the
perimeter of the window is 12 ft, what values of x, y,
and 9 will maximize the total area?

Exercise 40

~<

41

42

CHAPTER 12 Partial Differentiation

The U.S. Postal Service will not accept a rectangular
box if the sum of its length and girth (the perimeter of a
cross section that is perpendicular to the length) is more
than 108 in. Find the dimensions of the box of maximum
volume that can be mailed.

Find a vector in three dimensions having magnitude
8 such that the sum of its components is as large as
possible.

Exer. 43 — 44: Refer to Example 7.

43

44

45

Three electrical components of a computer are located
at P, (0, 0), P,(4, 0), and P;(0, 4). Locate the position
of a fourth component so that the signal delay time is
minimal.

Show that if triangle P, P, P; contains an angle that is
greater than or equal to 120°, then P cannot be located
as in Figure 12.76.

In scientific experiments, corresponding values of two
quantities x and y are often tabulated as follows:

x-values X Xy ceeox,

y-values Y Y2 ot Y,

Plotting the points (x,, y,) may lead the investigator

to conjecture that x and y are related linearly—that is,

y = mx + b for some m and b. Thus, it is desirable to
find a line / having that equation which best fits the data,
as illustrated in the figure. Statisticians call [ a linear
regression line.

One technique for finding / is to use the method of
least squares. To do so, consider, for each k, the vertical
deviation d; =y, — (mx, +b) of the point (x,, y,)
from the line y = mx + b (see figure). Values of m
and b are then determined that minimize the sum of the
squares > ;_ d,f (the squares d,f are used because some

Exercise 45

ks Vi) y=mx+b

C

(x2, ¥2)

k‘?
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of the d, may be negative). Substituting for d, produces
the following function f of m and b:

flm, b) =" (y, —mx, — b)
k=1

Show that the line y = mx + b of best fit occurs if

(i’%) m+nb= Xn:yk
k=1 k=1
and
n n n
(Zx,%) m+ (Zxk) b= Zxkyk.
k=1 k=1 k=1

Thus, the line can be found by solving this system of
two equations for the two unknowns m and b.

46 Given the equations in Exercise 45, show that the sum
Y k=1 d, of the deviations is 0. (This means that the
positive and negative deviations cancel one another, and
it is one reason for using Y ";_ d7 in the method of least
squares.)

Exer. 47-48: Use the method of least squares (see
Exercise 45) to find a line y = mx + b that best fits the
given data. '

47 | x-values 1 4
y-values 3 56

48 | x-values 1 4

y-values

49 The following table lists the relationship between
semester averages and scores on the final examination
. for ten students in a mathematics class.

Semester
-average 40 55 62 68 72 76 80 86 90 94
Final
examination | 30 45 65 72 60 82 76 92 88 98

Fit these data to a line, and use the line to estimate the
final examination grade of a student with an average of
70.

E] 50 In studying the stress-strain diagram of an elastic

material, an engineer finds that part of the curve appears
to be linear. Experimental values are listed in the
following table.

Stress(lb) | 2 22 24 26 28 3.0
‘Strain (in.) 0.10 0.30 0.40 0.60 0.70 0.90

Fit these data to a straight line, and estimate the strain
when the stress is 2.5 1b.

51 Shown in the figure are the relative positions of three
towns, A, B, and C. City planners want to use the least-
squares criterion to decide where to construct a new high
school that will serve all three-communities. They will
construct the school about a point P(x, y) at which the
sum of the squares of the distances from towns A, B,
and C is a minimum. Find the relative position of the
construction site.

Exercise 51
y (miles)

—
X (miles)

52 Generalize Exercise 51 to the case of n towns at
positions Q, (xy, y;), Qr(xp, ¥5), ..., @, (x,, ¥,)-

53 Exercise 45 may be generalized to solve the problem
of finding the plane z = ax + by + ¢ that best fits
data (xq, ¥;» 21)» (X35 Y95 Zp)5 -5 (X5 Vs 2,)- The
method of least squares attempts to determine values
a, b, and c¢ such that

f@ b o)=Y (3 —ax,— by, —c)’
k=1

is minimized.

(a) Find a system of three equations for the three
unknowns a, b, and c.

(b) Find the plane that best fits the data (0, 0, 0),
0, 1, 0), (0, 0, 1), and (1, 1, 2). (Hint: Solve the
system of three equations f, =0, f, =0, f, =0.)
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54 Three alleles (alternative forms of a gene) A, B, and O be less than or equal to % (Hint: p>0,9 >0,r >0,
determine the four human blood types: A (AA or AO), B and p+qg+r=1)
(BB or BO), O (00), and AB. The Hardy-Weinberg law Exer. 55-56: Estimate the critical points of f on R =
asserts that the proportion of individuals in a population [(x, y): x| <1.5and |y| < 1.5} by graphing f.(x, y) =0
who carry two different alleles is given by the formula and fy «, y)—: 0 on the same coordinate pla.ne.x

P =2pq +2pr +2rq,

where p, q, and r are the proportions of alleles A, B,
and O, respectively, in the population. Show that P must 56 f(x, y)=xy—arctanx —y

55 f(x, y) =x’sinx —xy+4y>+y
5/4

LAGRANGE MULTIPLIERS

In many applications, we must find the extrema of a function f of several
variables when the variables are restricted in some manner. In this section,
we introduce the technique of Lagrange multipliers* to locate such ex-
trema. As an illustration, suppose we wish to find the volume of the largest
rectangular box with faces parallel to the coordinate planes that can be in-
scribed in the ellipsoid 16x? 4+ 4y? + 972 = 144. Note that, by symmetry,
it is sufficient to examine the part in the first octant illustrated in Figure
12.77.If P(x, y, z) is the vertex shown in the figure, then the volume V of
the entire box is V = 8xyz. We must find the maximum value of V subject
to the constraint (or side condition)

16x? +4y? +9z> — 144 = 0.

Figure 12.77

16x2 + 4y? + 922 = 144

*This method was invented by the French mathematician Joseph-Louis Lagrange (see Mathe-
maticians and Their Times, Chapter 7).
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Subtracting the second equation from the first, we obtain the following
equivalent equations:
2x =2y = 2xA + ) — QyA + @) = 2xA — 2yA
2 —y)=2A(x—y)=0
C2x—y)1—=1)=0
Consequently, either A = 1 orx = y. '
If A =1, we have 2z = 2A = 2(1), or z = 1. The first constraint—that
is, x2 + y* 4+ 2z — 16 = O—then gives us x> + y*> — 14 = 0. Solving this
equation simultaneously with x + y — 4 = 0, we find that either

x =2++/3, y=2-—«/§ or x=2-—4/3, y=2+«/§.

Thus, points on C that may lead to extrema are
P2++3,2-+/3,1) and P,2—+/3,2++3,1).
The corresponding distances from O are
d(0, P)) =15 =4d(0, P)).
If x = y, then, using the constraint x + y — 4 = 0, we obtain the equiv-

alent equations x + x —4 =0, 2x = 4, or x = 2. This gives us P;(2,2,4)

and d(0, P;) = 2/6.

Referring to Figure 12.81, we may now make the following observa-
tions. As a point moves continuously along C from A(4, 0, 0) to B(0, 4, 0),
its distance from the origin starts at (O, A) = 4, decreases to a minimum
value /15 at P,, and then increases to a maximum value 2./6 at P;. The

distance then decreases to +/15 at P, and again increases to 4 at B.
As a check on the solution, note that parametric equations for C are

x=4—t, y=t, z=4—1% 0<r<4
In this case,
fx,y,2) = @4 —10)2+12+ (4 — t2)?,

and the extrema of f may be found using single-variable methods. It can
be verified that the same points are obtained.

Exer. 1-10: Use Lagrange multipliers to find the extrema 3 f(x,y,2)=x+y+2z;

of f subject to the stated constraints.

Q) fx, ) =y* - day + 4

2ty =1

2 f(x, y) =2 +xy—y* +y;

2x+3y=1

2 +y?+2=25
4 f(x,y,2)=x>+y*+2%

x+y+z=25
5 f(x, y, 0 =x>+y> 425
x—y+z=1
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6

fx, y, 2)=x+2y -3z
z=4x2+y2
@f(x, v, ) =xt+y*+ 7%
x—y=1, y2—22=1

8

9

10

17

fx, y, ) =z—-x2—y%
x+y4+z=1, x>+y* =4

f(x,y,2,t) = xyzt;

x—z=12, y+r=4
FGy z8) = x2+y2 + 22 + 12

3x+4y=5 z+t=2

Find the point on the sphere x*+ y2 + 72 =9 that is
closest to the point (2, 3, 4).

Find the point on the line of intersection of the planes
x4+ 3y —2z=11and 2x — y + z = 3 that is closest to
the origin.

A closed rectangular box having a volume of 2 ft? is to
be constructed. If the cost per square foot of the material
for the sides, bottom, and top is $1.00, $2.00, and $1.50,
respectively, find the dimensions that will minimize the
cost.

Prove that a closed rectangular box of fixed volume and
minimal surface area is a cube.

Find the volume of the largest rectangular box that
has three of its vertices on the positive x-, y-, and
z-axes, respectively, and a fourth vertex on the plane
2x + 3y +4z=12.

Find the dimensions of the rectangular box of maximum
volume that has three of its faces in the coordinate
planes, one vertex at the origin, and another vertex in
the first octant on the plane 2x + 3y + 5z = 90.

A container with a closed top and fixed surface area is to
be constructed in the shape of a right circular cylinder.
Find the relative dimensions that maximize the volume.

—~

&

Exer. 1-4: Describe the domain of f and the level curve

or surface through P.
I f(x, y) = /36 — 4x% 4+ 9y%,; PG, 4)
2 f(x, y)=Inxy; P(2, 3)

CHAPTER 12 REVIEW EXERCISES
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Find the dimensions of the rectangular box of maximum
volume, with faces parallel to the coordinate planes, that
can be inscribed in the ellipsoid 4x> + 4y% + z% = 36.

Prove that the triangle of maximum area and fixed
perimeter p is equilateral. (Hint: If the sides are x, y, z
and if s = % p, then the area A is given by Heron’s
formula, A = 4/s(s — x)(s — y)(s — 2).)

Prove that the product of the sines of the angles of a
triangle is greatest when the triangle is equilateral.

The strength of a rectangular beam varies as the product
of its width and the square of its depth. Find the
dimensions of the strongest rectangular beam that can
be cut from a cylindrical log whose cross sections are
elliptical with major and minor axes of lengths 24 in.
and 16 in., respectively.

If x units of capital and y units of labor are required
to manufacture f(x, y) units of a certain commodity,
the Cobb-Douglas production function is defined by
flx, y) = kx”yb, where k is a constant and a and b
are positive numbers such that a + b = 1. Suppose that
fx, y)= x\/3 y4/ 3 and that each unit of capital costs
C dollars and each unit of labor costs L dollars. If the
total amount available for these costs is M dollars, so
xC + yL = M, how many units of capital and labor will
maximize production?

El Exer. 23-24: Use Lagrange multipliers and graphs to
estimate the extrema of f(x, y) subject to the constraint

glx, y)=0.
23 f(x, y)=y—cosx+2x; g(x, y)=x2+2y2—1

24 f(x, y) =18+ 1y

gx, y) =x*+y? -1

3 f(x,y,2)= (22 —x%— y2)_3/2; P, 0, 1)

4f(x,y,Z)= s
-y

secz PG. 3. 0)

X




