KING SAUD UNIVERSITY

College of Science

Math Department

M-106 Calculus Integration

Final Exam

Time: 180 minutes

1439 - 1440 II (Summer Semester)

Question 1:(3+3)

1. Let $f(x) = (1 + \cos x)^{2x}$. Calculate f'(0).

2. Find g(x) if $\int e^{x^2} g(x) dx = -e^{x^2} + c$, where c is a constant.

Question 2:(2+2+2) Evaluate the following integrals:

$$\int (2^x + 2^{-x} + 1) dx, \int \frac{1}{\sqrt{e^{2x} - 1}} dx, \int \frac{1}{\sqrt{x}\sqrt{x + 4}} dx$$

Question 3:(2+2+3) Evaluate the following integrals:

$$\int \frac{1}{x\sqrt{1-x^8}} \, dx, \int \frac{1}{(25-x^2)^{\frac{3}{2}}} \, dx, \int \frac{x^2+12x+3}{x^3-4x} \, dx$$

Question 4:(3+3+3)

- 1. Determine if the following integral is convergent or divergent. If it is convergent, find its value : $\int_{1}^{+\infty} \frac{\ln x}{x} dx.$
- 2. Find the area bounded by the graphs of the curves of $y = x^2 + 1$, y = 2x and x = 0.
- 3. Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the curves $y = x^2$ and $y = 1 x^2$ around the x-axis.

Question 5:(3+3+3+3)

- 1. Find the arc length of the curve : $y = \cosh x$, for $0 \le x \le 4$.
- 2. Find the points on the polar curve : $r(\theta) = 2\cos\theta$, $0 \le \theta \le \pi$ at which the tangent line to r is vertical.
- 3. Find the area of the region bounded by the polar curves $r = \tan \theta$, $\theta = 0$ and $\theta = \frac{\pi}{4}$.
- 4. Find the surface area generated by revolving the polar curve : $r = \cos \theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, arround the y-axis.