KING SAUD UNIVERSITY

First Semester 41

Math Department

December 15 2019

Final exam106

Time: 180mn

Question 1(2+2+3)

a) Find the number c in the mean value theorem for $f(x) = -x^2 + 4x$ on [0, 3]

- b) Compute the integral $\int \frac{dx}{\sqrt{5^x-16}}$
- c) Evaluate $\int \frac{\cot x \, dx}{\sqrt{9 (\sin x)^4}}$

Question 2(3+3+3)

- a) Compute $\lim_{x\to 3} \left(\frac{1}{x-3} \frac{1}{\ln(x-2)}\right)$
- b) Find $\int x^2 \tan^{-1}(x) dx$
- c) Evaluate the integral $\int (tanx)^4 (secx)^6 dx$

Question 3(3+3+3)

- a) Compute the following integral $\int \frac{x^2 dx}{(x^2+9)^{3/2}}$
- b) Find the integral $\int \frac{(3x-2)dx}{(x^2+4)(x+2)}$
- c) Evaluate the integral $\int \frac{dx}{3-\sin x+\cos x}$

Question 4(3+2+1)

- a) Sketch the region bounded by the curves: $y = 4 x^2$, y = x + 2 x = -3, x = 0 and find its area.
- b) Find the volume obtained by revolving the region bounded by the curves $y=-x^2+2$, y=1 about the line of equation x=3
- c) Set up an integral for the volume obtained by revolving the region in part b) about the line of equation y=4.

Question5(3+3+3)

- a) Find the length of the curve given by $r=(\cos{(\frac{\theta}{2})})^2$, $0\leq\theta\leq\pi$.
- b) Sketch the region R that lies inside the curve $r=1-sin\theta$ and outside the curve r=1 and find its area.
- c) Find the area of the surface obtained by revolving the curve $r=2cos\theta$ $0\leq\theta\leq\pi/4$ about the y-axis.