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Definition

The measure of linear association ρ between two variables X and Y
is estimated by the sample correlation coefficient r , where

r =
Sxy
√

SxxSyy

with Sxy =
n∑

i=1
(xi − x)(yi − y), Sxx =

n∑
i=1

(xi − x)2 and

Syy =
n∑

i=1

(yi − y)2.



Example

Let consider the following grades of 6 students selected at random

Mathematics grade 70 92 80 74 65 83
English grade 74 84 63 87 78 90

We have

n = 6, Sxy = 115.33, Sxx = 471.33, and Syy = 491.33.

Hence

r =
115.33√

(471.33)(491.33)
= 0.24.



Properties of r

1 r = 1 iff all (xi , yi ) pairs lie on straight line with positive slope,

2 r = −1 iff all (xi , yi ) pairs lie on a straight line with negative
slope.
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The form of a relationship between the response Y (the dependent
or the response variable) and the regressor X (the independent
variable) is in mathematically the linear relationship

Y = β0 + β1X + εi

where, β0 is the intercept, β1 the slope and εi , the error term in the
model, is a random variable with mean 0 and constant variance.
An important aspect of regression analysis is to estimate the
parameters β0 and β1 (i.e., estimate the so-called regression
coefficients). The method of estimation will be discussed in the
next section. Suppose we denote the estimates b0 for β0 and b1 for
β1. Then the estimated or fitted regression line is given by

Ŷ = b0 + b1x

where Ŷ is the predicted or fitted value.



Least Squares and the Fitted Model

Definition

Given a set of regression data {(xi , yi ); i = 1, 2, ..., n} and a fitted
model, ŷi = b0 + b1xi , the i th residual ei is given by

ei = yi − ŷi , i = 1, 2, ..., n.



We shall find b0 and b1, the estimates of β0 and β1, so that the
sum of the squares of the residuals is a minimum. This
minimization procedure for estimating the parameters is called the
method of least squares. Hence, we shall find b0 and b1 so as to
minimize

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − b0 − b1xi )
2

SSE is called the error sum of squares.



Theorem

Given the sample {(xi , yi ); i = 1, 2, ..., n}, the least squares
estimates b0 and b1 of the regression coefficients β0 and β1 are
computed from the formulas

b1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

∑n
i=1 xiyi − nx y∑n
i=1 x

2
i − nx2

b0 = y − b1x



Example

Consider the experimental data in Table, which were obtained from
33 samples of chemically treated waste in a study conducted at
Virginia Tech. Readings on x , the percent reduction in total solids,
and y , the percent reduction in chemical oxygen demand, were
recorded. We denote by
x: Solids Reduction
y: Oxygen Demand



x (%), y(%) x (%), y (%)
3 5 36 34
7 11 37 36
11 21 38 38
15 16 39 37
18 16 39 36
27 28 39 45
29 27 40 39
30 25 41 41
30 35 42 40
31 30 42 44
31 40 43 37
32 32 44 44
33 34 45 46
33 32 46 46
34 34 47 49
36 37 50 51
36 38



The estimated regression line is given by

ŷ = 3.8296 + 0.9036x .

Using the regression line, we would predict a 31% reduction in the
chemical oxygen demand when the reduction in the total solids is
30%. The 31% reduction in the chemical oxygen demand may be
interpreted as an estimate of the population mean µY |30 or as an
estimate of a new observation when the reduction in total solids is
30%.



Properties of the Least Squares Estimators

Theorem

We have

1 E (b0) = β0, E (b1) = β1,

2 V (b1) =
σ2∑n

i=1(xi − x)2
=

σ2

Sxx
.

Theorem

An unbiased estimate of σ2, named the mean squared error, is

σ̂2 =
SSE

n − 2
=

∑n
i=1(yi − ŷi )

2

n − 2



Inferences Concerning the Regression Coefficients

Theorem

Assume now that the errors εi are normally distributed. A
100(1− α)% confidence interval for the parameter β1 in the
regression line

b1 − tα/2
σ̂√
Sxx

< β1 < b1 + tα/2
σ̂√
Sxx

where tα/2 is a value of the t-distribution with n − 2 degrees of
freedom.



Example

Find a 95% confidence interval for β1 in the regression line, based
on the pollution data of Example 10.

Solution

We show that

σ̂2 =
SSE

n − 2
=

∑n
i=1(yi − ŷi )

2

n − 2
= 0.4299.

Therefore, taking the square root, we obtain σ̂ = 3.2295. Also,

Sxx =
n∑

i=1

(xi − x)2 = 4152.18.



Using Table of the t-distribution, we find that t0.025 ≈ 2.045 for 31
degrees of freedom. Therefore, a 95% confidence interval for β1 is

0.903643− (2.045)
3.2295√
4152.18

< β1 < 0.903643 + (2.045)
3.2295√
4152.18

which simplifies to

0.8012 < β1 < 1.0061.



Hypothesis Testing on the Slope

To test the null hypothesis H0 that β1 = β10, we again use the
t-distribution with n − 2 degrees of freedom to establish a critical
region and then base our decision on the value of

t =
b1 − β10
σ̂/
√
Sxx

which is t-distribution with n − 2 degrees of freedom.



Example

Using the estimated value b1 = 0.903643 of Example 10, test the
hypothesis that β1 = 1 against the alternative that β1 < 1.

Solution

The hypotheses are H0 : β1 = 1 and H1 : β1 < 1. So

t =
0.903643− 1

3.2295/
√

4152.18
= −1.92,

with n − 2 = 31 degrees of freedom (P ≈ 0.03).
Decision: P-value < 0.05, suggesting strong evidence that β1 < 1



One important t-test on the slope is the test of the hypothesis H0 :
β1 = 0 versus H1 : β1 6= 0. When the null hypothesis is not
rejected, the conclusion is that there is no significant linear
relationship between E (y) and the independent variable x .
Rejection of H0 above implies that a significant linear regression
exists.



Measuring Goodness-of-Fit: the Coefficient of Determination

A goodness-of-fit statistic is a quantity that measures how well a
model explains a given set of data. A linear model fits well if there
is a strong linear relationship between x and y .



Definition

The coefficient of determination, R2, is given by

R2 = 1− SSE

SST

where SSE =
∑n

i=1(yi − ŷi )
2 and SST =

∑n
i=1(yi − y)2.



Note that if the fit is perfect, all residuals yi − ŷi are zero, and
thus R2 = 1. But if SSE is only slightly smaller than SST , R2 ≈
0. In the example of table 10, the coefficient of determination
R2 = 0.913, suggests that the model fit to the data explains 91.3%
of the variability observed in the response, the reduction in
chemical oxygen demand.
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