AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

ARRAYS IN CLASSES AND
METHODS

Ch 7.2

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Arrays In Classes and Methods: Outline

- Common operations: printing, average, etc
- Arrays of Strings

- Case Study: Sales Report

- Indexed Variables as Method Arguments

- Entire Arrays as Arguments to a Method
CArguments-for- the Method-main

- Array Assignment and Equality

- Methods that Return Arrays

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Printing an array

- Consider an array list:
int list[] = new int[5];
list[0] = 50;
1list[3] = 70;

- What happens if we print the array name ?
System.out.print(list + " ");

- How do we print the whole array?
for(int 1 = 0; i<list.length; i++)
System.out.println(list[i]);

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Common operations

inesates 1~

- Sum and average

int sum = 0; double average = 0.0;

for (int index = 0; index < sales.length; 1ndex++)
sum = sum + sales|[index];

1f (sales.length != 0)
average = sum / sales.length;

- Finding index of largest number

maxIndex = 0;
for (int index = 1; 1ndex < sales.length; index++)
1f (sales[maxIndex] < sales[index])
maxIndex = i1ndex;

int largestSale = sales[maxIndex];

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Common operations

int sales[]={12, 32, 4, 55, 1, 23, 17, 30};

- Searching for a specific value

int searchItem = 10; // what if searchItem = 4 ?
int loc = 0;
boolean found = false;

while (loc < sales.length && !found)

1f (sales[loc] == searchItem)
found = true;
else
loc++;
1f (found)
System.out.print (loc);
else

System.out.print (“not found”);

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

1 | String[] names = new String [5]; //[declaration
2 | //Fill in the array

3 | names[0] = “Sarah Fahd?,

4 | names[1] = “Rund Al-Otaibi”;

5 | names[2] = “Asmaa Mubarak”;

6 | names[3] = “Reem Al-Otaibi’;

7 | names[4] = “Hind Al-Tamimi”;

» The first statement declares an array names of size 5.
» Each element of names is a String.
» Remember that a String stores an address rather than a value.

» Naturally, all String methods that we previously studied can be applied
on EACH element of the String array.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

» Therefore, after the execution of the previous code segment, each array
element contains an address that points to (refers to) the corresponding

String.

» The memory layout will be as follows:

namesJ0] names[1] names|2] names|3] namesl4]

Adrs of.StrO Adrs of.Strl Adrs oi Str2 Adrs of.StrS Adrs oj Str4

<€

pyed yeres
IqrRIO-IV PUNY
Yereqniy eewsy <&
IqreIO-IV Wedd ¢
A1omays-|v pyeys <&

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

> String methods may be applied on each element of the String array.

» The following code segment applies a few methods on each String of
the array names:

1 | String[] names = new String [5]; //[declaration
... | //Fill'in the array

7 | names[4] = “Hind Al-Tamimi”;

8 | for (index = 0; index < names.length; index++)

91 {

11 System.out.printin (names[index]);
13 System.out.println (names[index].length());
15 System.out.printin (names[index].substring(0, 5));

17 System.out.printin (names[index].toUpperCase());
18 }

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

» String methods may be applied on each element of the String array.

» The following code segment applies a few methods on each String of
the array names:

1 | String[] names = new String [5]; //[declaration
... | //Fill'in the array

7 | names[4] = “Hind Al-Tamimi”;

8 | for (index = 0; index < names.length; index++)

91 {
10 // print the stored names
11 System.out.printin (namesJindex]);

12 // print the length of each name
13 System.out.printin (namesJindex].length());

14 /lextracts the first four letters

15 System.out.printin (names[index].substring(0, 5));
16 /[converts the string into upper case

17 System.out.printin (names|index].toUpperCase());

18 | }

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Case Study: Sales Report

- Program to generate a sales report

- Class will contain
- Name
- Sales figure

- View class declaration, listing 7.3
class SalesAssociate

../../slides2/CodeSamples4.htm#Listing 7.3

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.2 Sales Associate Class

import java.util.Scanner;

},ﬂ'**

Class for sales associate records.
*/

public class SalesAssociate

{

private String name;
private double sales;

public SalesAssociate()

' name = "No record";
sales = 0;
}
public SalesAssociate(String initialName, double initialSales)
' set(initialName, initialSales);
}
public void set(String newName, double newSales)
{

name = newName;
sales = newSales;

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.2 Sales Associate Class

import java.util.Scanner;

f”**

Class for sales associate records.
*/

public class SalesAssociate

{

private String name;
private double sales;

public SalesAssociate()

{

name = "No record";
sales = 0;

Iy

public SalesAssociate(String

{
set(initialName, initial

ks

public void set(String newNa
{

name = newName;

sales = newSales;

s
T

public void readInput()

{

}

System.out.print("Enter name of sales associate: ");
Scanner keyboard = new Scanner(System.in);
name = keyboard.nextLine();

System.out.print("Enter associate's sales: $");
sales = keyboard.nextDouble();

public void writeQutput()

{

}

L

System.out.printin("Name: + name) ;
System.out.println("Sales: $" + sales);

public String getName()

{
}

return name;

public double getSales()

{

}

return sales;

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Case Study: Sales Report

Main subtasks for our program
1. Get ready
2. Obtain the data

3. Compute some statistics (update instance
variables)

4. Display the results

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Case Study: Sales Report

- Figure 7.3 Class diagram for class
SalesReporter

— highestSales: double

— averageSales: double

— team: SalesAssociate[]
- numberOfAssociates: int

+ getData(): void
+ computeStats(): void
+ displayResults(): void

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.4 A Sales Report Program (part I of 3)

import java.util.Scanner; e s e e

/*E the end of the class.
Program to generate sales report.

*/

public class SalesReporter

{

private double highestSales;

private double averageSales;

private SalesAssociate[] team; //The array object 1is
//created 1n getData.

private int numberOfAssociates; //Same as team. length

/{’ﬂ‘#

Reads the number of sales associates and data for each one.
#/

public void getData()

{

Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter number of sales associates:");
numberOfAssociates = keyboard.nextInt();

team = new SalesAssociate[numberOfAssociates + 1];

1"'\-—..
for (int 1 = 1; 1 <= numberOfAssociates; 1++) — Array oblect

{ created here.
team[i] = new SalesAssociate();

System.out.printin("Enter data for-associate " + 1);
team[i1].readInput();
System.out.printin(); SalesAssociate
} objecte created here.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

/##
Computes the average and highest sales figures.
Precondition: There 1s at least one salesAssociate.
=/
public void computeStats()
{
double nextSales = team[1].getSales();
highestSales = nextSales;
double sum = nextSales;
for (int i = 2; 1 <= numberOfAssociates; i++)

{ D — Al soed
nextSales = team[i].getSales();) tiﬁﬂm;mgmp

sum = sum + nextSales;
starts withteam(2].
1T (nextSales > highestSales) 2]

highestSales = nextSales; //highest sales so far.

}

averageSales = sum / numberOfAssociates;

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

,,!'##
Displays sales report on the screen.
*/
public void displayResults()
{
System.out.printin("Average sales per associate is %" +
averageSales);
System.out.printIn("The highest sales figure is $§" +
highestSales);
System.out.printin();
System.out.printin("The following had the highest sales:");
for (int i = 1; 1 <= numberOfAssociates; i++)
{
double nextSales = team[1].getSales();
1t (nextSales == highestSales)

{
team[1] .writeOutput();
System.out.printIn("$" + (nextSales - averageSales)
+ " above the average.");
System.out.printin();
}

CSC1i11

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

}

System.out.printin("The rest performed as follows:");
for (int 1 = 1; 1 <= numberOfAssociates; 1++)
{

double nextSales = team[i].getSales();

1t (team[i1].getSales() != highestSales)

{
team[i].writeOQutput();
1T (nextSales >= averageSales)
System.out.printin("$" + (nextSales -
averageSales) + " above the average.");
else
System.out.printin("$" + (averageSales -
nextSales) + " below the average.");
System.out.printin();
}

}

public static void main(String[] args)

{

SalesReporter clerk = new SalesReporter();
clerk.getData();

clerk.computeStats();
clerk.displayResults();

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

,,!'ﬂ'#
Displays sales report on the screen.
*/
public void displayResults()
{
System.out.printin("Average sales per associate is %" +
averageSales);
System.out.printIn("The highest sales figure is $§" +
highestSales);
System.out.printin();
System.out.printin("The following had the highest sales:");
for (int i = 1; 1 <= numberOfAssociates; i++)

double nextSales = team[1].getSales();
1T (nextSales == highestSales)
- - . System.out.printin("The rest performed as follows:");
t'EEifI'I[1] Wi tEDUtPUtcji for (int i = 1; i <= numberOfAssociates; i++)
- W _ {
System.out.printin($" + (nextSales aver2g25a1esj Jouble nextsales - tean[i].getsalesO);
+ " above the average."); if (team[i].getSales() != highestSales)
System.out.printin(); {
F p () : team[i].writeOutput();
} it (nextSales >= averageSales)
} System.out.printIn("$" + (nextSales -
averageSales) + " above the aver
else
System.out.printIn("$" + (averageSales -
nextSales) + " below the aver
System.out.printin();
1

}

1

public static void main(String[] args)

{
SalesReporter clerk = new SalesReporter();
clerk.getData();
clerk.computeStats();
clerk.displayResults();

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Case Study: Sales Report

- View sales report program, listing 7.4
class SalesReporter

Average sales per associate is $32000.0
The highest sales figure is $50000.0

The following had the highest sales:
Name: Natalie Dressed

Sales: $50000.0

$18000.0 above the average.

The rest performed as follows:
Name: Dusty Rhodes
Sales: $36000.0

$4000.0 above the average.

Name: Sandy Hair
Sales: $10000.0
$22000.0 below the average.

../../slides2/CodeSamples4.htm#Listing 7.4

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Indexed Variables as Method Arguments

- Indexed variable of an array

- Example ... a[1]

- Can be used anywhere a variable of the array base type
can be used
- View program using indexed variable as an
argument, listing 7.5
class ArgumentDemo

../../slides2/CodeSamples4.htm#Listing 7.5

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.5 Indexed Variables as Arguments

import java.util.Scanner;

;,!'**
A demonstration of using indexed variables as arguments.
*/
public class ArgumentDemo
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter your score on exam 1:");
int firstScore = keyboard.nextInt();
int[] nextScore = new int[3];
for (int i = 0; 1 < nextScore.length; i++)
nextScore[i] = firstScore + 5 * 1;
for (int 1 = 0; 1 < nextScore.length; 1++)
{
double possibleAverage =
getAverage(firstScore, nextScore[i]);
System.out.printin("If your score on exam 2 is " +
nextScorel[il);
System.out.printIn("your average will be " +
possibleAverage) ;
}
}
public static double getAverage(int nl, int n2)
{
return (nl + n2) / 2.0;
}

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Entire Arrays as Arguments

- Declaration of array parameter similar to how an
array Is declared

- Example:

public class SampleClass

{
public static void incrementArra¢By2 (doublel] a@
{

for (int 1 = 0; 1 < anArray.length; 1++)
anArray[i] = anArray[i] + 2;

}

<The rest of the class definition goes here.>

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Entire Arrays as Arguments

- Note — array parameter in a method heading
does not specify the length
- An array of any length can be passed to the method
- Inside the method, elements of the array can be
changed
- When you pass the entire array, do not use
sqguare brackets in the actual parameter

- For example:
double[] myArray = {1,2,3};

incrementArrayBy2 (myArray) ;

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Array Assignment and Equality

- Arrays are objects

- Assignment and equality operators behave (misbehave)
as specified in previous chapter

- Variable for the array object contains memory
address of the object

- Assignment operator = copies this address

- Equality operator == tests whether two arrays are
stored in same place in memory

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Assinging vs. Copying Arrays of same size

» Consider two arrays: 1ista and 1istB as shown
» Assume we want to make the content of 1istB a copy of 1istA
>

Therefore, we wrote the following:
listB = 1listA;

» Will that work correctly?
No, because it only assigns the address of 1istA to 1istB

Y

li=stB 0 0 0 0 0 0 0

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Copying Arrays of same size

> This is the correct way to copy the contents:

for (int index = 0; index < listA.length; index++)
listB[index] = listA[index];

(0] [1] [2] [3] [4] [5] I[&]

[0] [1]1 [2]1 [3] ([4]1 [5] I[&]
li=stE

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

EQUALITY OF TWO ARRAYS

» Two arrays are considered equal if:
o They have the same size, and

o All corresponding elements in both arrays are equal.

liStA[0] listA[1] listA[2] listA[3] listA[4] liStA[5] liStA[6]
5 10 15 20 25 30 35
listB[0] listB[1] listB[2] listB[3] listB[4] listB[5] listB[6]
5 25 15 20 10 30 35
listC[0] listC[1] listC[2] listC[3] listC[4] listC[5] listC[6]
5 10 15 20 0 0 0
listD[0] listD[1] listD[2] listD[3] listD[4]

5 10 15 20 0

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Array Assignment and Equality

- Two kinds of equality

- View example program, listing 7.6
class TestEquals

Not equal by ==.
Equal by the equals method.

../../slides2/CodeSamples4.htm#Listing 7.6

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.6 Two Kinds of Equality (part 1 of 2)

/##

A demonstration program to test two arrays for equality.
w

/

public class TestEquals

{

public static void main(String[] args)

{ public static boolean equals(int[] a, int[] b)
int[] a = new int[3]; { .
int[] b = new int[3]; The a ?oo]ean elementsMatch = true;//tentatively
setArray(a): conts if (a.length != b.length)
setArray(b): In the elementsMatch = false;

else
if (b == a) {
System.out.println("Equal by ==.") int i = 0;
else while (elementsMatch & & (i < a.length))
System.out.printin("Not equal by = {
it (a[i] !'= b[iD)
it (equals(b, a)) elementsMatch = false;
System.out.printin("Equal by the e i++4;
else }
System.out.printIn("Not equal by tt }
} return elementsMatch;

e] }

ublic static void setArray(int arra
Screen Output ? y(@nt[] y)

Not equal by ==. for gi:gy}ﬁﬁ ?;ii < array.length; i++)

Equal by the equals method.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Array Assignment and Equality

- Note results of ==

- Note definition and use of method equals

- Receives two array parameters

- Checks length and each individual pair of array
elements

- Remember array types are reference types

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Gotcha — Don’t Exceed Array Bounds

- The code below falls If the user enters a number
like 4. Use input validation.

Scanner kbd = new Scanner (System.in);
int[] count = {0,0,0,0};

System.out.println ("Enter ten numbers between 0 and 3.");
for (int 1 = 0; 1 < 10; 1i++)
{

int num = kbd.nextInt () ;
count [num] ++;

}
for (int 1 = 0; 1 < count.length; i++)
System.out.println("You entered " + count[i] + " " 4+ 1 + "'s");

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Gotcha — Creating an Array of Objects

- When you create an array of objects Java does not create instances
of any of the objects!

- For example, consider the code:

SalesAssociate[] team = new SalesAssociate[1l0];
System.out.println (team[0] .getName()); // ERROR - why?

- We can NOT access team[0] yet; itis null.

- First we must create references to an object:

team[0] = new SalesAssociate ("Jane Doe", 5000);
team[1l] = new SalesAssociate ("John Doe", 5000);

- we can now access team[0].getName() or team[1].getSalary()
System.out.println (team[0] .getName ()) ; // OK - why?
System.out.println (team[1l].getSalary()); // OK - why?

)

System.out.println (team[7] .getSalary()); // ERROR - why?

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Self-Check Exercises

- Write a complete program:

- That searches in an array X for all the elements that
are multiples of 7 or multiples of 3

- X Is of type integer, and size 100.

- The subscripts of the target elements are to be stored in
another array Y of the same size.

- The array X is filled by the user.
- The array Y is initialized to -1.

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods that Return Arrays

- A Java method may return an array

- View example program, listing 7.7
class ReturnArrayDemo

- Note definition of return type as an array

- To return the array value
- Declare a local array

- Use that identifier in the return statement

../../slides2/CodeSamples4.htm#Listing 7.7

CSC1i11

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.7 A Method That Returns an Array

import java.util.Scanner;

,/**
A demonstration of a method that returns an array.
=
public class ReturnArrayDemo
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter your score on exam 1:");
int firstScore = keyboard.nextInt();
int[] nextScore = new int[3];

for (int i = 0; 1 < nextScore.length; i++)
nextScore[i] = firstScore + 5 * 1;

double[] averageScore =
getArrayOfAverages(firstScore, nextScore);
for (int i = 0; 1 < nextScore.length; i++)
{
System.out.printin("If your score on exam 2 is " +
nextScorel[il);
System.out.printin("your average will be " +

averageScore[i]);

}

public static double[] getArrayOfAverages(int firstScore,
int[] nextScore)
{
double[] temp = new double[nextScore.length];
for (int i = 0; i < temp.length; i++)
temp[i] = getAverage(firstScore, nextScorel[i]);

return temp;

}

public static double getAverage(int nl, int n2)

{
return (n1l + n2) / 2.0;

} The sample screen output 1s
} the came as In Listing 7.5.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

LISTING 7.7 A Method That Returns an Array

import java.util.Scanner;

/"*#
A demonstration of a method that returns an array.
¥/
public class ReturnArrayDemo
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter your score on exam 1:");
int firstScore = keyboard.nextInt();
int[] nextScore = new int[3];
for (int i = 0; i < nextScore.length; i++)
nextScore[i] = firstScore + 5 * 1;
double[] averageScore =
getArrayOfAverages(firstScore, nextScore);
for (int i = 0; i < nextScore.length; i++)
{
System.out.printin("If your score on exam 2 is " +
nextScore[i]); : . . .
System.out.printTn("your average will I public static double[] getArrayDFAverages(1nE[51rsti;ore,)
averageScore[i]); ‘ n nextscore
} ¥ doubTle[] temp = new double[nextScore.length];

for (int i = 0; i < temp.length; i++)
temp[i] = getAverage(firstScore, nextScorel[il);

e

return temp;

}

public static double getAverage(int nl, int n2)

{
return (nl + n2) / 2.0;

} The sample écreen output ls
¥ the eame as In Listing 7.5.

