
ARRAYS IN CLASSES AND

METHODS

Ch 7.2

Arrays in Classes and Methods: Outline

• Common operations: printing, average, etc

• Arrays of Strings

• Case Study: Sales Report

• Indexed Variables as Method Arguments

• Entire Arrays as Arguments to a Method

• Arguments for the Method main

• Array Assignment and Equality

• Methods that Return Arrays

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

Printing an array

• Consider an array list:

int list[] = new int[5];

list[0] = 50;

list[3] = 70;

• What happens if we print the array name ?

System.out.print(list + " ");

• How do we print the whole array?

for(int i = 0; i<list.length; i++)

System.out.println(list[i]);

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

Common operations
int sales[]={12, 32, 4, 55, 1, 23, 17, 30};

• Sum and average
int sum = 0; double average = 0.0;

for (int index = 0; index < sales.length; index++)

sum = sum + sales[index];

if (sales.length != 0)

average = sum / sales.length;

• Finding index of largest number
maxIndex = 0;

for (int index = 1; index < sales.length; index++)

if (sales[maxIndex] < sales[index])

maxIndex = index;

int largestSale = sales[maxIndex];

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

Common operations
int sales[]={12, 32, 4, 55, 1, 23, 17, 30};

• Searching for a specific value
int searchItem = 10; // what if searchItem = 4 ?

int loc = 0;

boolean found = false;

while (loc < sales.length && !found)

if (sales[loc] == searchItem)

found = true;

else

loc++;

if (found)

System.out.print(loc);

else

System.out.print(“not found”);

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

ARRAY OF Strings

6

String[] names = new String [5]; //declaration

//Fill in the array

names[0] = “Sarah Fahd”;

names[1] = “Rund Al-Otaibi”;

names[2] = “Asmaa Mubarak”;

names[3] = “Reem Al-Otaibi”;

names[4] = “Hind Al-Tamimi”;

1

2

3

4

5

6

7

➢ The first statement declares an array names of size 5.

➢ Each element of names is a String.

➢ Remember that a String stores an address rather than a value.

➢ Naturally, all String methods that we previously studied can be applied
on EACH element of the String array.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

7

➢ Therefore, after the execution of the previous code segment, each array
element contains an address that points to (refers to) the corresponding
String.

➢ The memory layout will be as follows:

names[0] names[1] names[2] names[3] names[4]

Adrs of Str0 Adrs of Str1 Adrs of Str2 Adrs of Str3 Adrs of Str4

Adrs1

names

S
a

ra
h

 F
a

h
d

R
u

n
d

A
l-O

ta
ib

i

A
s
m

a
a

M
u

b
a

ra
k

R
e
e
m

A
l-O

ta
ib

i

S
h
a
h
d

A
l-S

h
e
w

e
iry

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

8

➢ String methods may be applied on each element of the String array.

➢ The following code segment applies a few methods on each String of
the array names:

String[] names = new String [5]; //declaration

//Fill in the array

names[4] = “Hind Al-Tamimi”;

for (index = 0; index < names.length; index++)

{

System.out.println (names[index]);

System.out.println (names[index].length());

System.out.println (names[index].substring(0, 5));

System.out.println (names[index].toUpperCase());

}

1

…

7

8

9

10

11

12

13

14

15

16

17

18

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

ARRAY OF Strings

9

➢ String methods may be applied on each element of the String array.

➢ The following code segment applies a few methods on each String of
the array names:

String[] names = new String [5]; //declaration

//Fill in the array

names[4] = “Hind Al-Tamimi”;

for (index = 0; index < names.length; index++)

{

// print the stored names

System.out.println (names[index]);

// print the length of each name

System.out.println (names[index].length());

//extracts the first four letters

System.out.println (names[index].substring(0, 5));

// converts the string into upper case

System.out.println (names[index].toUpperCase());

}

1

…

7

8

9

10

11

12

13

14

15

16

17

18

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Case Study: Sales Report

• Program to generate a sales report

• Class will contain

• Name

• Sales figure

• View class declaration, listing 7.3
class SalesAssociate

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 10

../../slides2/CodeSamples4.htm#Listing 7.3

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 11

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 12

Case Study: Sales Report

Main subtasks for our program

1. Get ready

2. Obtain the data

3. Compute some statistics (update instance

variables)

4. Display the results

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 13

Case Study: Sales Report

• Figure 7.3 Class diagram for class
SalesReporter

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 14

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 17

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 18

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 19

Case Study: Sales Report

• View sales report program, listing 7.4
class SalesReporter

Sample

screen

output

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 20

../../slides2/CodeSamples4.htm#Listing 7.4

Indexed Variables as Method Arguments

• Indexed variable of an array

• Example … a[i]

• Can be used anywhere a variable of the array base type

can be used

• View program using indexed variable as an

argument, listing 7.5
class ArgumentDemo

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 21

../../slides2/CodeSamples4.htm#Listing 7.5

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 22

Entire Arrays as Arguments

• Declaration of array parameter similar to how an

array is declared

• Example:

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 23

Entire Arrays as Arguments

• Note – array parameter in a method heading

does not specify the length

• An array of any length can be passed to the method

• Inside the method, elements of the array can be

changed

• When you pass the entire array, do not use

square brackets in the actual parameter

• For example:

double[] myArray = {1,2,3};

incrementArrayBy2(myArray);

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 24

Array Assignment and Equality

• Arrays are objects

• Assignment and equality operators behave (misbehave)

as specified in previous chapter

• Variable for the array object contains memory

address of the object

• Assignment operator = copies this address

• Equality operator == tests whether two arrays are

stored in same place in memory

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 25

Assinging vs. Copying Arrays of same size

➢ Consider two arrays: listA and listB as shown
➢ Assume we want to make the content of listB a copy of listA

➢ Therefore, we wrote the following:
listB = listA;

➢ Will that work correctly?

➢ No, because it only assigns the address of listA to listB

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 26

Copying Arrays of same size

➢ This is the correct way to copy the contents:

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 27

EQUALITY OF TWO ARRAYS

listA[0] listA[1] listA[2] listA[3] listA[4] listA[5] listA[6]

5 10 15 20 25 30 35

listB[0] listB[1] listB[2] listB[3] listB[4] listB[5] listB[6]

5 25 15 20 10 30 35

Adrs1

listA

Adrs2

listB

listC[0] listC[1] listC[2] listC[3] listC[4] listC[5] listC[6]

5 10 15 20 0 0 0

Adrs3

listC

listD[0] listD[1] listD[2] listD[3] listD[4]

5 10 15 20 0

Adrs4

listD

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 28

➢ Two arrays are considered equal if:
o They have the same size, and
o All corresponding elements in both arrays are equal.

Array Assignment and Equality

• Two kinds of equality

• View example program, listing 7.6
class TestEquals

Sample

screen

output

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 29

../../slides2/CodeSamples4.htm#Listing 7.6

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 30

Array Assignment and Equality

• Note results of ==

• Note definition and use of method equals

• Receives two array parameters

• Checks length and each individual pair of array

elements

• Remember array types are reference types

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 31

Gotcha – Don’t Exceed Array Bounds

• The code below fails if the user enters a number

like 4. Use input validation.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 32

Scanner kbd = new Scanner(System.in);

int[] count = {0,0,0,0};

System.out.println("Enter ten numbers between 0 and 3.");

for (int i = 0; i < 10; i++)

{

int num = kbd.nextInt();

count[num]++;

}

for (int i = 0; i < count.length; i++)

System.out.println("You entered " + count[i] + " " + i + "'s");

Gotcha – Creating an Array of Objects

• When you create an array of objects Java does not create instances

of any of the objects!

• For example, consider the code:
SalesAssociate[] team = new SalesAssociate[10];

System.out.println(team[0].getName()); // ERROR - why?

• We can NOT access team[0] yet; it is null.

• First we must create references to an object:

team[0] = new SalesAssociate("Jane Doe", 5000);

team[1] = new SalesAssociate("John Doe", 5000);

• we can now access team[0].getName() or team[1].getSalary()

System.out.println(team[0].getName()); // OK - why?

System.out.println(team[1].getSalary()); // OK - why?

System.out.println(team[7].getSalary()); // ERROR - why?

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 33

• Write a complete program:

• That searches in an array X for all the elements that

are multiples of 7 or multiples of 3

• X is of type integer, and size 100.

• The subscripts of the target elements are to be stored in

another array Y of the same size.

• The array X is filled by the user.

• The array Y is initialized to -1.

34CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods that Return Arrays

• A Java method may return an array

• View example program, listing 7.7
class ReturnArrayDemo

• Note definition of return type as an array

• To return the array value

• Declare a local array

• Use that identifier in the return statement

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 35

../../slides2/CodeSamples4.htm#Listing 7.7

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 36

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 37

