Chapter 14

Uncertain Knowledge & Reasoning

Bayesian Networks

- AKA belief network, probabilistic network, causal network, and knowledge map.
- Bayesian network is used to represent the dependencies among variables
- **Bayesian network:** is a directed graph in which each node is annotated with quantitative probability information

Bayesian Network

Definition:

- Let $X = (X_1, \dots, X_n)$ be random variables.
- A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over *X* as a product of local conditional distributions, one for each node:

$$P(X_1 = x_1, \dots, X_n = x_n) \stackrel{\text{def}}{=} \prod_{i=1}^n p(x_i \mid x_{Parents(i)})$$

Markov networks vs. Bayesian network

MARKOV NETWORKS

- factors can be arbitrary
- arbitrary set of preferences and constraints

BAYESIAN NETWORK

- factors are local conditional probabilities
- define a generative process represented by a directed graph

Applications

- Language modeling
- Document classification (Naïve Bayes)
- Topic modeling (Latent Dirichlet Allocation (LDA))
- Medical diagnosis
- Social network analysis

Example

Question:

Does hearing that there's an earthquake increase, decrease, or keep constant the probability of a burglary?

4

- P(B = 1 | A = 1)
- P(B = 1 | A = 1, E = 1)

Bayesian Network Components

• Bayesian network:

- 1. Each node corresponds to a random variable, which may be discrete or continuous.
- 2. A set of directed links connects pairs of nodes. If there is an arrow from node *X* to node *Y*, *X* is said to be a parent of *Y*. The graph has no directed cycles (DAG).
- 3. Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node.
- 4. A joint distribution which is produced by multiplying all the local conditional distributions together

Bayesian Network Components

Bayesian network:

- 1. Each node corresponds to a random variable, which may be discrete or continuous: Burglar, Earthquake, Alarm
- 2. A set of directed links connects pairs of nodes. If there is an arrow from node *X* to node *Y*, *X* is said to be a parent of *Y*. The graph has no directed cycles (DAG): Burglars and earthquakes cause alarms
- 3. Each node X_i has a conditional probability distribution $P(X_i | \text{Parents}(X_i))$ that quantifies the effect of the parents on the node.
- 4. A joint distribution which is produced by multiplying all the local conditional distributions together

Joint Distribution

Joint Distribution

The Joint Distribution is:

\mathbb{P}	$\mathbb{P}(B = b, E = e, A = a) \stackrel{\text{def}}{=} p(b) p(e) p(a b, e)$									
b	е	а	p (b)	p (e)	p (a b , e)	$\mathbb{P}(B=b, E=e, A=a)$				
0	0	0	$1-\varepsilon$	$1 - \varepsilon$	1	$(1-\varepsilon)^2$				
0	0	1	$1 - \varepsilon$	$1 - \varepsilon$	0	0				
0	1	0	$1-\varepsilon$	Е	0	0				
0	1	1	$1-\varepsilon$	Е	1	$(1-\varepsilon)\varepsilon$				
1	0	0	Е	$1 - \varepsilon$	0	0				
1	0	1	Е	$1 - \varepsilon$	1	$(1-\varepsilon)\varepsilon$				
1	1	0	Е	Е	0	0				
1	1	1	Е	Е	1	ε^2				

 $\boldsymbol{p}(b)$

ε

 $0 \quad 1-\varepsilon \quad p(b)$

В

10

Probabilistic inference

- Probabilistic inference allows you to ask questions about the world
 - World is represented by the random variables X
- <u>Given</u> a Bayesian network $\mathbb{P}(X_1, \ldots, X_n)$ representing a probabilistic database:
 - a set of evidence variables E and values e, where E = e and $E \subseteq X$
 - a set of query variables $Q \subseteq X$
- <u>Result</u>: Calculate the probability of the query variables, given the evidence, marginalize out all other variables: $\mathbb{P}(Q \mid E = e)$
 - $\mathbb{P}(Q = q | E = e)$ for all values q

What is the probability of burglary without any evidence?

The Joint Distribution is:

Ш	I(D = b, L = c, A = a) = p(b) p(c) p(a b, c)								
b	е	а	p (b)	p (e)	p (a b , e)	$\mathbb{P}(B = b, E = e, A = a)$			
0	0	0	$1 - \varepsilon$	$1 - \varepsilon$	1	$(1-\varepsilon)^2$			
0	0	1	$1 - \varepsilon$	$1 - \varepsilon$	0	0			
0	1	0	$1 - \varepsilon$	Е	0	0			
0	1	1	$1-\varepsilon$	Е	1	$(1-\varepsilon)\varepsilon$			
1	0	0	Е	$1-\varepsilon$	0	0			
1	0	1	Е	$1-\varepsilon$	1	$(1-\varepsilon)\varepsilon$			
1	1	0	Е	Е	0	0			
1	1	1	Е	Е	1	ε^2			

 $\mathbb{P}(B = b, E = e, A = a) \stackrel{\text{def}}{=} p(b) p(e) p(a|b, e)$

$$P(B=1) = \varepsilon(1-\varepsilon) + \varepsilon^2 = \varepsilon$$

Inference via Reduction to Markov Networks

- The joint distribution is the product of all the local conditional distributions
- The local conditional distributions $p(a \mid b, e)$ are all non-negative, so they can be interpreted as simply factors in a factor graph

Inference via Reduction to Markov Networks

• **Markov networks** defines the joint distribution as the product of all the factors divided by some normalization constant *Z*:

$$\mathbb{P}(X = x) = \frac{Weight(x)}{\sum_{x} Weight(x)} = \frac{\prod_{j=1}^{m} f_j(x)}{Z}$$

• **Bayesian Networks** also define a probability distribution:

$$\mathbb{P}(X = x) = \prod_{i=1}^{n} p(x_i \mid x_{Parents(i)})$$

• Here, Z = 1 because the factors are local conditional distributions of a Bayesian network

Inference via Reduction to Markov Networks

- Single factor that connects all the parents _
- NOT two factors, one per arrow!
- Run any inference algorithm for Markov networks (Gibbs sampling) P(B = 1)
- But there is something that's missing, which is the ability to condition on evidence

Conditioning on evidence

What is the probability of burglary given the alarm rang?

$$P(B=1|A=1) = \frac{\varepsilon(1-\varepsilon) + \varepsilon^2}{0 + \varepsilon(1-\varepsilon) + \varepsilon^2 + \varepsilon(1-\varepsilon)} = \frac{1}{2-\varepsilon}$$

b	е	а	p (b)	p (e)	p(a b,e)	$\mathbb{P}(B = b, E = e, A = a)$
0	0	0	$1 - \varepsilon$	$1 - \varepsilon$	1	$(1-\varepsilon)^2$
0	0	1	1 – <i>ε</i>	$1 - \varepsilon$	0	0
0	1	0	1 - ε	Е	0	0
0	1	1	1 - ε	Е	1	$(1-\varepsilon)\varepsilon$
1	0	0	Е	$1 - \varepsilon$	0	0
1	0	1	Е	$1 - \varepsilon$	1	$(1-\varepsilon)\varepsilon$
1	1	0	Е	Е	0	0
1	1	1	Е	Е	1	ε^2

What is the probability of burglary given the alarm rang and there was an earthquake?

The Joint Distribution is:

P	$\mathbb{P}(B = b, E = e, A = a) = p(b) p(e) p(a b, e)$									
b	е	а	p (b)	p (e)	p (a b , e)	$\mathbb{P}(B = b, E = e, A = a)$				
0	0	0	$1-\varepsilon$	1 – ε	1	$(1-\varepsilon)^2$				
0	0	1	$1 - \varepsilon$	$1-\varepsilon$	0	0				
0	1	0	$1-\varepsilon$	Е	0	0				
0	1	1	$1-\varepsilon$	Е	1	$(1-\varepsilon)\varepsilon$				
1	0	0	Е	$1-\varepsilon$	0	0				
1	0	1	Е	$1-\varepsilon$	1	$(1-\varepsilon)\varepsilon$				
1	1	0	Е	Е	0	0				
1	1	1	Е	Е	1	ε^2				

$$\mathbb{P}(B = b, E = e, A = a) \stackrel{\text{def}}{=} p(b) p(e) p(a|b, e)$$

$$P(B = 1 | A = 1, E = 1) = \frac{\varepsilon^2}{\varepsilon^2 + \varepsilon(1 - \varepsilon)} = \varepsilon$$

Question

$$P(B = 1|A = 1) = \frac{\varepsilon(1 - \varepsilon) + \varepsilon^2}{0 + \varepsilon(1 - \varepsilon) + \varepsilon^2 + \varepsilon(1 - \varepsilon)} = \frac{1}{2 - \varepsilon}$$
$$P(B = 1|A = 1, E = 1) = \frac{\varepsilon^2}{\varepsilon^2 + \varepsilon(1 - \varepsilon)} = \varepsilon$$

• Does an earthquake decrease the probability of a burglary? No!

Key idea: explaining away!

Suppose two causes (E,B) positively influence an effect (A). Conditioned on the effect, further conditioning on one cause reduces the probability of the other cause:

$$P(B = 1 | A = 1, E = 1) < P(B = 1 | A = 1)$$

Note: happens even if causes are independent!

Note

Example (1)

- Assume $\varepsilon = 0.05$
- What is the probability of a burglary happening?

•
$$P(b = 1) = 0.05$$

• What is the joint probability of a burglary, alarm, and no earthquake?

 $h^{\mathbf{0}}$

0.95

 b^1

0.05

p(*b*)

• $\mathbb{P}(b = 1, e = 0, a = 1) = 0.05 * 0.95 * 1 = 0.0475$

Example (2)

• Recall:

•
$$P(a|b) = \frac{P(a \wedge b)}{P(b)} = \frac{1}{P(b)}P(a \wedge b) = \alpha P(a, b)$$

• Given that the alarm rings, what is the probability of a burglary?

 $h^{\mathbf{0}}$

0.95

0.05

p(b)

В

- A query can be answered using a Bayesian network by computing sums of products of conditional probabilities from the network
- $P(b|a) = \alpha P(a,b) = \alpha \sum_{e} P(a,b,e) = \alpha \sum_{e} P(b)P(e)P(a|b,e)$
- $= \alpha P(b) \sum_{e} P(e) P(a|b,e)$

 e^1

0.05

 a^1

 $\mathbf{0}$

Ε

p(a|b,e)

А

p(*e*)

 b^{0}, e^{0}

 b^{0}, e^{1}

 $b^{1}.e^{0}$

b¹, **e**¹

0.95

 a^0

0

0

0

Given that the alarm rings, what is the probability of a burglary? Note: we don't know anything about the earthquake.

 $\frac{0.05}{0.05 \pm 0.0475} = 0.5128$

Example (2)

 $P(b|a) = \alpha P(a,b) = \alpha \sum_{e} P(a,b,e) = \alpha \sum_{e} P(b)P(e)P(a|b,e)$ $= \alpha P(b) \sum_{e} P(e) P(a|b,e)$ $\mathbb{P}(b = 1, e = 0, a = 1) = 0.05 * 0.95 * 1 = 0.0475$ sum = 0.05 $\mathbb{P}(b = 1, e = 1, a = 1) = 0.05 * 0.05 * 1 = 0.0025$ Normalize $\mathbb{P}(b = 0, e = 0, a = 1) = 0.95 * 0.95 * 0 = 0$ **p**(b) sum = 0.0475 $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.05 * 1 = 0.0475$ $0 \quad \frac{0.0475}{0.05 \pm 0.0475} = 0.4871$

• So, when the alarm goes off, the probability of a burglary increases!

 \triangleright Since the value of ε is the same for earthquake, probabilities are the same when calculated $_{22}$

We can also check the answer from the joint distribution table ..

$$(B = 1|A = 1) = \frac{P(B = 1, A = 1)}{P(A = 1)}$$
$$= \frac{\epsilon(1 - \epsilon) + \epsilon^2}{0 + (1 - \epsilon)\epsilon + \epsilon(1 - \epsilon) + \epsilon^2}$$
$$= \frac{\epsilon(1 - \epsilon) + \epsilon^2}{2 + \epsilon(1 - \epsilon) + \epsilon^2}$$

b	е	а	p (b)	p (e)	p(a b,e)	$\mathbb{P}(B=b, E=e, A=a)$
0	0	0	$1-\varepsilon$	$1 - \varepsilon$	1	$(1-\varepsilon)^2$
0	0	1	$1-\varepsilon$	$1-\varepsilon$	0	0
0	1	0	$1-\varepsilon$	З	0	0
0	1	1	$1-\varepsilon$	Е	1	$(1-\varepsilon)\varepsilon$
1	0	0	З	$1-\varepsilon$	0	0
1	0	1	Е	$1-\varepsilon$	1	$(1-\varepsilon)\varepsilon$
1	1	0	Е	Е	0	0
1	1	1	Е	Е	1	ε^2

$$=\frac{0.05 * (1 - 0.05) + 0.05 * 0.05}{2 * 0.05 * (1 - 0.05) + 0.05 * 0.05} = 0.5128$$

Example (3)

• Given that the alarm rings, what is the probability of a burglary if you know an earthquake happened?

$$P(b|a = 1, e = 1) = \alpha P(a, b, e) = \alpha P(b)P(e)P(a|b, e)$$
• $\mathbb{P}(b = 1, e = 1, a = 1) = 0.05 * 0.95 * 1 = 0.0475$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.9025$
• $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.95 * 1 = 0.95$

- When the alarm goes off, but we know an earthquake happened, the probability of a burglary does not change!
- This is Explaining Away that people do: if the alarm rings and we know there is an earthquake, we discount the possibility of a burglary being the cause

Example (4)

Given that the alarm rings, what is the probability of **both** a burglary and an earthquake simultaneously?

•
$$P(b, e|a) = \alpha P(a, b, e) = \alpha P(b)P(e)P(a|b, e)$$

 $\mathbb{P}(b = 1, e = 1, a = 1) = 0.05 * 0.05 * 1 = 0.0025$ both = 0.0025
 $\mathbb{P}(b = 1, e = 0, a = 1) = 0.05 * 0.95 * 1 = 0.0475$ either one = 0.095
 $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.05 * 1 = 0.0475$ either one = 0.095
 $\mathbb{P}(b = 0, e = 1, a = 1) = 0.95 * 0.05 * 1 = 0.0475$ either one = 0.095

A Probabilistic Learning Algorithm

Naïve Bayes

Naïve Bayes

- Naïve Bayes is a very simple model which is often used for classification.
- Generative model
 - Generative models: how the input is generated from the output
 - Discriminative models: take the input and produce the output label
- Extremely easy and fast, just requires counting

Applying Bayes Rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

$$P(\text{disease}|\text{symptom}) = \frac{P(\text{symtom}|\text{disease})P(\text{disease})}{P(\text{symptom})}$$

• Example:

- Meningitis causes the patient to have a stiff neck 70% of the time
- The prior probability that a patient has meningitis is 1/50,000
- The prior probability that any patient has a stiff neck is 1%

Patient has a stiff neck. What is the probability the patient has meningitis?

$$P(\text{meningitis}|\text{stiff neck}) = \frac{P(\text{stiff neck}|\text{meningitis})P(\text{meningitis})}{P(\text{stiff neck})} = \frac{0.7 * \left(\frac{1}{50000}\right)}{0.01}$$

Naïve Bayes assumptions:

- **1.** Feature independence: The features of the data are conditionally independent of each other, given the class label. P(A, B) = P(A)P(B)
- 2. Continuous features are normally distributed: If a feature is continuous, then it is assumed to be normally distributed within each class.
- **3. Discrete features have multinomial distributions**: If a feature is discrete, then it is assumed to have a multinomial distribution within each class.
- **4. Features are equally important**: All features are assumed to contribute equally to the prediction of the class label.
- 5. No missing data: The data should not contain any missing values.

	Outlook	Temperature	Humidity	Windy	Play Golf
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No 29

•
$$P(y|x_1, \dots, x_n) = \frac{P(x_1|y) \times \dots \times P(x_n|y)P(y)}{P(x_1) \times \dots \times P(x_n)}$$

•
$$P(y|x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i|y)}{P(x_1) \times ... \times P(x_n)}$$

1. $P(y) = \frac{9}{14}$

	Outlook	Temperature	Humidity	Windy	Play Golf
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

•
$$P(y|x_1, \dots, x_n) = \frac{P(x_1|y) \times \dots \times P(x_n|y)P(y)}{P(x_1) \times \dots \times P(x_n)}$$

•
$$P(y|x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i|y)}{P(x_1) \times ... \times P(x_n)}$$

1.
$$P(y) = \frac{9}{14}$$

2. Calculate $P(x_i|y_i)$

Outlook						
	Yes	No	P(yes)	P(no)		
Sunny	3	2	3/9	2/5		
Overcast	4	0	4/9	0/5		
Rainy	3	2	3/9	2/5		
Total	9	5	100%	100%		

Outlook								
	Yes	No	P(yes)	P(no)				
Sunny	3	2	3/9	2/5				
Overcast	4	0	4/9	0/5				
Rainy	3	2	3/9	2/5				
Total	9	5	100%	100%				

Temperature							
	Yes	No	P(yes)	P(no)			
Hot	2	2	2/9	2/5			
Mild	4	2	4/9	2/5			
Cool	3	1	3/9	1/5			
Total	9	5	100%	100%			

• today = (Sunny, Hot, Normal, False)

•
$$P(y|x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i|y)}{P(x_1) \times ... \times P(x_n)}$$

• $P(\text{yes}|\text{S}, \text{H}, \text{N}, \text{F}) \propto P(y) \prod_{i=1}^{n} P(x_i|y)$

$$= \frac{9}{14} \cdot \frac{3}{9} \cdot \frac{2}{9} \cdot \frac{6}{9} \cdot \frac{6}{9} \approx 0.02116$$

- $P(\text{no}|\text{S},\text{H},\text{N},\text{F}) \propto \frac{9}{14} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} \approx 0.0068$
- Normalize:

$$P(\text{yes}|\text{today}) = \frac{0.02116}{0.02116 + 0.0068} \approx 0.757$$

$$P(\text{no}|\text{today}) = \frac{0.0068}{0.02116 + 0.0068} \approx 0.243$$

Humidity								
	Yes	No	P(yes)	P(no)				
High	3	4	3/9	4/5				
Normal	6	1	6/9	1/5				
Total	9	5	100%	100%				

Play	Play				
Yes	9	9/14			
No	5	5/14			
Total	14	100%			

Wind				
	Yes	No	P(yes)	P(no)
False	6	2	6/9	2/5
True	3	3	3/9	3/5
Total	9	5	100%	100%