Chapter 14

Uncertain Knowledge &
Reasoning




Bayesian Networks

* AKA belief network, probabilistic network, causal network, and knowledge
map.

- Bayesian network is used to represent the dependencies among variables

- Bayesian network: is a directed graph in which each node is annotated with
quantitative probability information



Bayesian Network

Definition:
e letX = (Xq,...,X,) berandom variables.

« A Bayesian network is a directed acyclic graph (DAG) that specifies
a joint distribution over X as a product of local conditional
distributions, one for each node:

n
def

P(X1=x1, ... X0 = X5) = Hp(xi |xParents(i))
=1



Markov networks vs. Bayesian network

MARKOV NETWORKS

» factors can be arbitrary

* arbitrary set of preferences and
constraints

BAYESIAN NETWORK

e factors are local conditional
probabilities

 define a generative process
represented by a directed graph



Applications

Language modeling

Document classification (Naive Bayes)

Topic modeling (Latent Dirichlet Allocation (LDA))

Medical diagnosis

 Social network analysis



Question:

Does hearing that there's an earthquake increase,
decrease, or keep constant the probability of a

burglary?

o P(B =
. P(B =

1] A
1|4

1)
LE = 1)



Bayesian Network Components

- Bayesian network:

1.
2.

Each node corresponds to a random variable, which may be discrete or continuous.

A set of directed links connects pairs of nodes. If there is an arrow from node X to
node Y, X is said to be a parent of Y. The graph has no directed cycles (DAG).

Each node X; has a conditional probability distribution P(X;| Parents(X;)) that
quantifies the effect of the parents on the node.

A joint distribution which is produced by multiplying all the local conditional
distributions together



Bayesian Network Components

- Bayesian network:

1. Each node corresponds to a random variable, which may be discrete or continuous: Burglar,
Earthquake, Alarm

2. A set of directed links connects pairs of nodes. If there is an arrow from node X to node Y, X
is said to be a parent of Y. The graph has no directed cycles (DAG): Burglars and
earthquakes cause alarms

3. Each node X; has a conditional probability distribution P(X;| Parents(X;)) that quantifies the
effect of the parents on the node.

4. Ajoint distribution which is produced by multiplying all the local conditional distributions
together



Joint Distribution
" | o)

0O 1-—c¢ p(b)

p(e)=¢-le=1]+(1—-¢) [e=0]
plalb,e)=[a=(bVe)]

The Joint Distribution is:

P(B = bE = e, A = a) = p(b) p(e) p(alb, e)

e | p(e)



Joint Distribution

The Joint Distribution is:

def

0O 1-¢ p(b)

P(B=b,E=eA=a)=p()p(e)plalb,e)

b e a p(b) p(e) |p(alb,e)| P(B=bE =¢,A=aqa)
0 0 0 1—¢ 1—¢ 1 (1-—¢)?

0 0 1 1—¢ 1—¢ 0 0

0 1 0 1—¢ £ 0 0

0 1 1 1—¢ £ 1 (1-¢)e

1 0 0 € 1—¢ 0 0

1 0 1 € 1—¢ 1 (1-¢)e

1 1 0 € g 0 0

1 1 1 £ £ 1 g2
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Probabilistic inference

* Probabilistic inference allows you to ask questions about the world

« World is represented by the random variables X

 Given a Bayesian network P(X3,...,X;) representing a probabilistic database:
e asetof evidence variables E and values e, where E =eand E € X

« asetof queryvariablesQ € X

 Result: Calculate the probability of the query variables, given the evidence,
marginalize out all other variables: P(Q | E = e)

« P(Q =q|E =e)forallvalues g
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What is the probability of burglary without
any evidence?

The Joint Distribution is:

P(B = b E = e, 4 = a) = p(b) p(e) plalb, )

b e a p(b) p(e) |p(alb,e)| P(B=b,E =¢e,A=aqa)
0 0 0 1—¢ 1—c¢ 1 (1-—¢)?

0 0 1 1—¢ 1—¢ 0 0

0 1 0 1—¢ g 0 0

0 1 1 1—¢ £ 1 (1-¢)e

1 0 0 € 1—¢ 0 0

1 0 1 € 1—-¢ 1 (1-2¢)e¢

1 1 0 € g 0 0

1 1 1 £ £ 1 &

PB=1)=c(1—-¢)+e?’=c¢
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Inference via Reduction to Markov Networks

* The joint distribution is the product of all the local conditional distributions

* The local conditional distributions p(a | b, e) are all non-negative, so they can
be interpreted as simply factors in a factor graph

() p(b) ) p(e)
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Inference via Reduction to Markov Networks

« Markov networks defines the joint distribution as the product
of all the factors divided by some normalization constant Z:

Weight(x)  IIjz, fi(x)

PIX =x) = Y Weight(x) Z

- Bayesian Networks also define a probability distribution:
n
P(X =x) = Hp(xi |xParents(i))
i=1

 Here, Z = 1 because the factors are local conditional
distributions of a Bayesian network
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Inference via Reduction to Markov Networks

* Single factor that connects all the parents
* NOT two factors, one per arrow!

* Run any inference algorithm for Markov networks
(Gibbs sampling) P(B = 1)

* But there is something that's missing, which is the
ability to condition on evidence
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Conditioning on evidence

What is the probability of burglary

given the alarm rang?

PB=1lA=1) =

b e a p(b) p(e) |p(alb,e)| P(B=b,E =¢,A=a)
0 0 0 1—¢ 1—c¢ 1 (1-—¢)?

0 0 1 1—¢ 1—¢ 0 0

0 1 0 1—¢ g 0 0

0 1 1 1—¢ £ 1 (1-¢)e

1 0 0 € 1—¢ 0 0

1 0 1 € 1—-¢ 1 (1-2¢)e¢

1 1 0 € g 0 0

1 1 1 £ £ 1 &

(1 —¢) + &? 1

0+£(1—e)+82+e(1—e):2—e
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What is the probability of burglary given the
alarm rang and there was an earthquake?

The Joint Distribution is:

P(B = b E = e, 4 = a) = p(b) p(e) plalb, )

b e a p(b) p(e) |p(alb,e)| P(B=b,E =¢,A=a)

0 0 0 1—¢ 1—c¢ 1 (1-—¢)?

0 0 1 1—¢ 1—¢ 0 0

0 1 0 1—¢ g 0 0 22

O | 1T ] 1| 1-¢ £ 1 (1—¢)e P(B:1|A:1,E=1)=€2+8(1_8)=e
1 0 0 € 1—¢ 0 0

1 0 1 € 1—-¢ 1 (1-2¢)e¢

1 1 0 € g 0 0

1 1 1 £ £ 1 &
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PB=1lA=1) = e(1—¢) + &? 1
B 7 0+e(l—e)+e24+e(1—-¢) 2-—c¢

Question 2

PB=1A=1E=1) = =
( | ) e2+e(l—-¢)

&

* Does an earthquake decrease the probability of a burglary? No!
Key idea: explaining away!

Suppose two causes (E,B) positively influence an effect (A). Conditioned on the
effect, further conditioning on one cause reduces the probability of the other
cause:

PB=1|A=1E=1)<PB=1|4=1)

Note: happens even if causes are independent!
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Note

50| bt

0.95 0.05 p(b)

 Probabilities can be written concisely

e Assume € = 0.05

R

p(e) 0.95 0.05

pCels.e) T
b0, e 1 0
b°, el 0 1
bl e 0 1
0 1

bl, el
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50| bl

0.95 0.05 p(b)

e | el

p(e) 0.95 0.05

Example (1)

p(alb,e)
 Assume € = 0.05 bo-om-
» What is the probability of a burglary happening? Zl’eo g 1
« P(b=1) =0.05 b1, el 0 1

« What is the joint probability of a burglary, alarm, and no earthquake?
e P(b=1,e=0,a=1)=0.05*0.95 * 1 = 0.0475

20



50| bl

0.95 0.05 p(b)

e | el

p(e) 0.95 0.05

Example (2)

* Recall: p(alb,e) -m-
P(anb) b°, e°
* P(alb) = Pcéb) = P(b)P(a/\ b) = aP(a,b) el 0 1

bl e 0 1

 Given that the alarm rings, what is the probability of a burglary? plel 0 1

* A query can be answered using a Bayesian network by computing sums of
oroducts of conditional probabilities from the network

 P(bla) = aP(a,b) = a),.P(a,b,e) =a),,P(b)P(e)P(a|b,e)
= aP(b) X.e P(e)P(alb, e)
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Given that the alarm rings, what is the probability of a burglary?
Note: we don't know anything about the earthquake.

Example (2)

P(bla) = aP(a,b) = a),,P(a,b,e) =a),.,P(b)P(e)P(a|b,e)
= aP(b) 2. P(e)P(alb,e)

P(b=1,e=0,a=1)=0.05%x0.95%*1 = 0.0475 -
_ sum = 0.05

P(b=1e=1a=1)=0.05%0.05*1=0.0025]

— Normalize

PO =0.e=0.0=1)=095-095+0=C T
— sum = 0.0475

P(b=0,e=1,a=1)=095%0.05*1=0.0475 o _ 00475
- 0.05 + 0.0475

= 0.4871

0.05

0.05 1 00475~ 0°128

* So, when the alarm goes off, the probability of a burglary increases!

> Since the value of € is the same for earthquake, probabilities are the same when calculated ,,



We can also check the answer from the joint

distribution table ..

ey PB=14=D
(B=1lA=1) = PA=1)
e(1—¢€)+ €2

~0 + (1—€)e + e(1—¢€) + €2

el -e)+ €
 2xe(l—¢€)+ €2

~ 0.05%(1—0.05) + 0.05*0.05
~ 2%0.05%*(1—0.05) + 0.05*0.05

= 0.5128

b e a p(b) p(e) |p(alb,e)| P(B=bE =¢,A=aqa)
0 0 0 1—c¢ 1—¢ 1 (1—¢)?

0 0 1 1—¢ 1—¢ 0 0

0 1 0 1—¢ € 0 0

0 1 1 1—¢ € 1 (1-¢)e

1 0 0 £ 1—¢ 0 0

1 0 1 5 1—¢ 1 (1-2¢e)e¢

1 1 0 £ € 0 0

1 1 1 £ £ 1 g2
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Example (3)

« Given that the alarm rings, what is the probability of a burglary if you know an earthquake
happened?

P(bla=1,e =1) = aP(a,b,e) = aP(b)P(e)P(a|b,e) n

e Pb=1e=1,a=1)=0.05%095x1=0.0475 0.0475
. 0 ; = 0.05
— Normalize 0.9025 + 0.0475
. [P)(b =0e=1a= 1) = 0.95 % 0.95 1 = 0.9025
B 0.9025
1 = 0.95

0.9025 + 0.0475

* When the alarm goes off, but we know an earthquake happened, the probability of a burglary
does not change!

 This is Explaining Away that people do: if the alarm rings and we know there is an earthquake,
we discount the possibility of a burglary being the cause
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Example (4)

Given that the alarm rings, what is the probability of both a burglary and an
earthquake simultaneously?

 P(b,ela) = aP(a,b,e) = a P(b)P(e)P(a|b,e)

—_—

P(b=1,e=1,a=1) = 0.05x0.05 * 1 = 0.0025 | both = 0.0025

— Normalize

P(b=1e=0,a=1) =005 0951 = 0.0475

P(b=0,e=1a=1)=0.95%0.05+1=0.0475]

both 0.0025 _ 0.0256
0.0975
. 0.095
either = 0.9744

0.0975
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A Probabilistic
Learning

Algorithm

Naive Bayes




Nalve Bayes

* Naive Bayes is a very simple model which is often used for classification.

* Generative model
« Generative models: how the input is generated from the output

 Discriminative models: take the input and produce the output label

« Extremely easy and fast, just requires counting
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P(bla)P(a)

Applying Bayes Rule P(a|b) = P b

Diagnosis Causation
P (effect|cause)P(cause) P(symtom|disease)P(disease)

P (effect)

P(cause|effect) = P(disease|symptom) =

P (symptom)
« Example:

« Meningitis causes the patient to have a stiff neck 70% of the time
* The prior probability that a patient has meningitis is 1/50,000
* The prior probability that any patient has a stiff neck is 1%

Patient has a stiff neck. What is the probability the patient has meningitis?

1
P (stiff neck|meningitis) P(meningitis) 0.7+ (50000)

P (meningitis|stiff neck) = P (stiff neck) 0.01
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Naive Bayes Classitiers

* Naive Bayes assumptions:

1.

Feature independence: The features of the data are
conditionally independent of each other, given the class
label. P(A,B) = P(A)P(B)

Continuous features are normally distributed: If a
feature is continuous, then it is assumed to be normally
distributed within each class.

Discrete features have multinomial distributions: If a
feature is discrete, then it is assumed to have a
multinomial distribution within each class.

Features are equally important: All features are assumed
to contribute equally to the prediction of the class label.

No missing data: The data should not contain any missing
values.

10

11

12

13

Outlook

Rainy

Rainy

Overcast

Sunny

Sunny

Sunny

Overcast

Rainy

Rainy

Sunny

Rainy

Overcast

Overcast

Sunny

Temperature

Hot

Hot

Hot

Mild

Cool

Cool

Cool

Mild

Cool

Mild

Mild

Mild

Hot

Mild

Humidity

High

High

High

High

Normal

Normal

Normal

High

Normal

Normal

Normal

High

Normal

High

Windy

False

True

False

False

False

True

True

False

False

False

True

True

False

True

Play Golf

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
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Outlook  Temperature Humidity Windy Play Golf

Naive Bayes Classitiers

0 Rainy Hot High False No
1 Rainy Hot High True No
2 Overcast Hot High False Yes
3 Sunny Mild High False Yes

P . X P(x1|Y)P
e P(lxy, oy Xy) = (x1]y) X .. X P(xn|y)P(¥) 4 - -

P(xl) X ... X P(xn) Sunny Normal False

5 Sunny Cool Normal True No

P(y) [Mizq P(xily)

« P(y|x Xp) =

1’ el n 6 Overcast Cool Normal True Yes

P(xq1) X .. X P(xp)
( ) 9 7 Rainy Mild High False No
14‘ 8 Rainy Cool Normal False Yes
9 Sunny Mild Normal False Yes
10 Rainy Mild Normal True Yes
11 Overcast Mild High True Yes
12 Overcast Hot Normal False Yes
13 Sunny Mild High True No
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Naive Bayes Classitiers

P(x1|y) X .. X P(xn|y)P(y)

* P(ylxg, o Xxp) =

P(xq) X .. X P(xy)

_ P =4 P(xily)

° P(y|x1; ---;xn) _ P(xq1) X .. X P(xp)

1. P(y)=—

9
14
2. Calculate P(x;|y;)

Outlook
Yes |[No | P(yes) | P(no)
Sunny 3 (2| 3/9 | 2/5
Overcast | 4 | O 4/9 0/5
Rainy 3 | 2 3/9 2/5
Total 9 5 | 100% | 100%
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Naive Bayes Classitiers

Outlook Temperature
Yes [No| P(yes) | P(no) Yes [ No| P(yes) | P(no)
Sunny 3 12| 3/9 | 2/5 Hot 2 |2 2/9 2/5
Overcast | 4 |0 4/9 0/5 Mild 4 2 4/9 2/5
Rainy 3 |2 3/9 2/5 Cool 3 1 3/9 1/5
Total 9 5 | 100% | 100% Total 9 S 100% | 100%
Humidity Wind
Yes | No | P(yes) | P(no) Yes | No| P(yes) | P(no)
High 3 4 3/9 4/5 False 6 2 6/9 2/5
Normal 6 1 6/9 1/5 True 3 3 3/9 3/5
Total 9 5 | 100% | 100% Total 9 5 100% | 100%
Play P(Yes)/P(No)

Yes 9 9/14

No 5 514

Total 14 100%

today = (Sunny, Hot, Normal, False)

_ P IIjz4 P(xily)
" P(x1) X ... X P(xp)

P(ylxq, ..., xp)

P(yes|S,H,N,F) o< P(y) [Ti=; P(x;]y)

9 3 2 6 6
=2'5'5°5 5~ 0.02116
« P(no|S,H,N,F) oc%%%%% ~ 0.0068
 Normalize:
P(yes|today) = 002116+ 0.757

0.02116+0.0068

Predict play golf

P(no|today) = 0.0068 ~ 0.243
0.02116+0.0068
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