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Bayesian Networks

• AKA belief network, probabilistic network, causal network, and knowledge 

map.

• Bayesian network is used to represent the dependencies among variables

• Bayesian network: is a directed graph in which each node is annotated with 

quantitative probability information



Bayesian Network

Definition:

• Let 𝑋 =  (𝑋1, … , 𝑋𝑛) be random variables.

• A Bayesian network is a directed acyclic graph (DAG) that specifies 

a joint distribution over 𝑋 as a product of local conditional 

distributions, one for each node:

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)  =  ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 𝑥𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 )
def



Markov networks vs. Bayesian network

MARKOV NETWORKS

• factors can be arbitrary

• arbitrary set of preferences and 

constraints

BAYESIAN NETWORK

• factors are local conditional 

probabilities

• define a generative process 

represented by a directed graph



Applications

• Language modeling

• Document classification (Naïve Bayes)

• Topic modeling (Latent Dirichlet Allocation (LDA))

• Medical diagnosis

• Social network analysis



Example

Question:
Does hearing that there’s an earthquake increase, 
decrease, or keep constant the probability of a 
burglary?

• 𝑃(𝐵 =  1 | 𝐴 =  1) 
• 𝑃(𝐵 =  1 | 𝐴 =  1, 𝐸 =  1) 



Bayesian Network Components

• Bayesian network:

1. Each node corresponds to a random variable, which may be discrete or continuous.

2. A set of directed links connects pairs of nodes. If there is an arrow from node 𝑋 to 

node 𝑌, 𝑋 is said to be a parent of 𝑌. The graph has no directed cycles (DAG).

3. Each node 𝑋𝑖 has a conditional probability distribution 𝑃 𝑋𝑖  Parents(𝑋𝑖)) that 

quantifies the effect of the parents on the node.

4. A joint distribution which is produced by multiplying all the local conditional 

distributions together



Bayesian Network Components

• Bayesian network:

1. Each node corresponds to a random variable, which may be discrete or continuous: Burglar, 
Earthquake, Alarm

2. A set of directed links connects pairs of nodes. If there is an arrow from node 𝑋 to node 𝑌, 𝑋 
is said to be a parent of 𝑌. The graph has no directed cycles (DAG): Burglars and 
earthquakes cause alarms

3. Each node 𝑋𝑖 has a conditional probability distribution 𝑃 𝑋𝑖  Parents(𝑋𝑖)) that quantifies the 
effect of the parents on the node.

4. A joint distribution which is produced by multiplying all the local conditional distributions 
together



Joint Distribution

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

𝑏 𝒑(𝑏)

0 1 − 𝜀

1 𝜀

𝒆 𝒑(𝒆)

0 1 − 𝜀

1 𝜀

𝑏 𝑒 𝑎 𝒑(𝒂|𝑏, 𝒆)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

𝑝(𝑏) = 𝜀 · [𝑏 = 1] + (1 − 𝜀) · [𝑏 = 0] 
𝑝(𝑒) = 𝜀 · [𝑒 = 1] + (1 − 𝜀) · [𝑒 = 0] 
𝑝 𝑎 𝑏, 𝑒) = [𝑎 = (𝑏 ∨ 𝑒)] 

The Joint Distribution is:

ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎 = 𝑝 𝑏  𝑝 𝑒  𝑝(𝑎|𝑏, 𝑒)
def



Joint Distribution

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

𝑏 𝒑(𝑏)

0 1 − 𝜀

1 𝜀

𝒆 𝒑(𝒆)

0 1 − 𝜀

1 𝜀

𝑏 𝑒 𝑎 𝒑(𝒂|𝑏, 𝒆)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

The Joint Distribution is:

ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎 = 𝑝 𝑏  𝑝 𝑒  𝑝 𝑎 𝑏, 𝑒
def

𝑏 𝑒 𝑎 𝒑(𝒃) 𝒑(𝒆) 𝒑(𝒂|𝒃, 𝒆) ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎

0 0 0 1 − 𝜀 1 − 𝜀 1 1 − 𝜀 2

0 0 1 1 − 𝜀 1 − 𝜀 0 0

0 1 0 1 − 𝜀 𝜀 0 0

0 1 1 1 − 𝜀 𝜀 1 1 − 𝜀 𝜀

1 0 0 𝜀 1 − 𝜀 0 0

1 0 1 𝜀 1 − 𝜀 1 1 − 𝜀 𝜀

1 1 0 𝜀 𝜀 0 0

1 1 1 𝜀 𝜀 1 𝜀2



Probabilistic inference

• Probabilistic inference allows you to ask questions about the world

• World is represented by the random variables 𝑋

• Given a Bayesian network ℙ(𝑋1, . . . , 𝑋𝑛) representing a probabilistic database:

• a set of evidence variables 𝐸 and values 𝑒, where 𝐸 = 𝑒 and 𝐸 ⊆ 𝑋

• a set of query variables 𝑄 ⊆ 𝑋

• Result: Calculate the probability of the query variables, given the evidence, 
marginalize out all other variables: ℙ(𝑄 | 𝐸 =  𝑒)

• ℙ(𝑄 = 𝑞 | 𝐸 = 𝑒) for all values 𝑞



What is the probability of burglary without 
any evidence?
The Joint Distribution is:

ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎 = 𝑝 𝑏  𝑝 𝑒  𝑝 𝑎 𝑏, 𝑒
def

𝑏 𝑒 𝑎 𝒑(𝒃) 𝒑(𝒆) 𝒑(𝒂|𝒃, 𝒆) ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎

0 0 0 1 − 𝜀 1 − 𝜀 1 1 − 𝜀 2

0 0 1 1 − 𝜀 1 − 𝜀 0 0

0 1 0 1 − 𝜀 𝜀 0 0

0 1 1 1 − 𝜀 𝜀 1 1 − 𝜀 𝜀

1 0 0 𝜀 1 − 𝜀 0 0

1 0 1 𝜀 1 − 𝜀 1 1 − 𝜀 𝜀

1 1 0 𝜀 𝜀 0 0

1 1 1 𝜀 𝜀 1 𝜀2

𝑃 𝐵 = 1 = 𝜀 1 − 𝜀 + 𝜀2 = 𝜀



Inference via Reduction to Markov Networks

• The joint distribution is the product of all the local conditional distributions

• The local conditional distributions 𝑝(𝑎 | 𝑏, 𝑒) are all non-negative, so they can 

be interpreted as simply factors in a factor graph

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)



Inference via Reduction to Markov Networks

• Markov networks defines the joint distribution as the product 
of all the factors divided by some normalization constant 𝑍:

ℙ 𝑋 = 𝑥 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑥

σ𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 𝑥
=

ς𝑗=1
𝑚 𝑓𝑗 𝑥

𝑍

• Bayesian Networks also define a probability distribution:

ℙ 𝑋 = 𝑥 = ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖  𝑥𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 )

• Here, 𝑍 =  1 because the factors are local conditional 
distributions of a Bayesian network 

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)



Inference via Reduction to Markov Networks

• Single factor that connects all the parents

• NOT two factors, one per arrow!

• Run any inference algorithm for Markov networks 

(Gibbs sampling) 𝑃(𝐵 = 1)

• But there is something that’s missing, which is the 

ability to condition on evidence

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)



Conditioning on evidence

What is the probability of burglary 
given the alarm rang?

𝑏 𝑒 𝑎 𝒑(𝒃) 𝒑(𝒆) 𝒑(𝒂|𝒃, 𝒆) ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎

0 0 0 1 − 𝜀 1 − 𝜀 1 1 − 𝜀 2

0 0 1 1 − 𝜀 1 − 𝜀 0 0

0 1 0 1 − 𝜀 𝜀 0 0

0 1 1 1 − 𝜀 𝜀 1 1 − 𝜀 𝜀

1 0 0 𝜀 1 − 𝜀 0 0

1 0 1 𝜀 1 − 𝜀 1 1 − 𝜀 𝜀

1 1 0 𝜀 𝜀 0 0

1 1 1 𝜀 𝜀 1 𝜀2

𝑃 𝐵 = 1 𝐴 = 1 =
𝜀 1 − 𝜀 + 𝜀2

0 + 𝜀 1 − 𝜀 + 𝜀2 + 𝜀 1 − 𝜀
=

1

2 − 𝜀



What is the probability of burglary given the 
alarm rang and there was an earthquake?
The Joint Distribution is:

ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎 = 𝑝 𝑏  𝑝 𝑒  𝑝 𝑎 𝑏, 𝑒
def

𝑏 𝑒 𝑎 𝒑(𝒃) 𝒑(𝒆) 𝒑(𝒂|𝒃, 𝒆) ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎

0 0 0 1 − 𝜀 1 − 𝜀 1 1 − 𝜀 2

0 0 1 1 − 𝜀 1 − 𝜀 0 0

0 1 0 1 − 𝜀 𝜀 0 0

0 1 1 1 − 𝜀 𝜀 1 1 − 𝜀 𝜀

1 0 0 𝜀 1 − 𝜀 0 0

1 0 1 𝜀 1 − 𝜀 1 1 − 𝜀 𝜀

1 1 0 𝜀 𝜀 0 0

1 1 1 𝜀 𝜀 1 𝜀2

𝑃 𝐵 = 1 𝐴 = 1, 𝐸 = 1 =
𝜀2

𝜀2 + 𝜀 1 − 𝜀
= 𝜀



Question

• Does an earthquake decrease the probability of a burglary? No!

Key idea: explaining away!

Suppose two causes (E,B) positively influence an effect (A). Conditioned on the 

effect, further conditioning on one cause reduces the probability of the other 

cause:

𝑃(𝐵 =  1 | 𝐴 =  1, 𝐸 =  1)  <  𝑃(𝐵 =  1 | 𝐴 =  1)

Note: happens even if causes are independent!

𝑃 𝐵 = 1 𝐴 = 1 =
𝜀 1 − 𝜀 + 𝜀2

0 + 𝜀 1 − 𝜀 + 𝜀2 + 𝜀 1 − 𝜀
=

1

2 − 𝜀

𝑃 𝐵 = 1 𝐴 = 1, 𝐸 = 1 =
𝜀2

𝜀2 + 𝜀 1 − 𝜀
= 𝜀



Note

• Probabilities can be written concisely

• Assume 𝜀 = 0.05

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

𝑏𝟎 𝑏𝟏

0.95 0.05

𝒆𝟎 𝒆𝟏

0.95 0.05

𝒂𝟎 𝒂𝟏

𝒃𝟎, 𝒆𝟎 1 0

𝒃𝟎, 𝒆𝟏 0 1

𝒃𝟏, 𝒆𝟎 0 1

𝒃𝟏, 𝒆𝟏 0 1



Example (1)

• Assume 𝜀 = 0.05

• What is the probability of a burglary happening? 

• P 𝑏 = 1 = 0.05

• What is the joint probability of a burglary, alarm, and no earthquake?

• ℙ 𝑏 = 1, 𝑒 = 0, 𝑎 = 1 = 0.05 ∗ 0.95 ∗ 1 = 0.0475

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

𝑏𝟎 𝑏𝟏

0.95 0.05

𝒆𝟎 𝒆𝟏

0.95 0.05

𝒂𝟎 𝒂𝟏

𝒃𝟎, 𝒆𝟎 1 0

𝒃𝟎, 𝒆𝟏 0 1

𝒃𝟏, 𝒆𝟎 0 1

𝒃𝟏, 𝒆𝟏 0 1



Example (2)

• Recall:

• 𝑃 𝑎 𝑏 =
𝑃 𝑎∧𝑏

𝑃 𝑏
=

1

𝑃 𝑏
𝑃 𝑎 ∧ 𝑏 = 𝛼𝑃(𝑎, 𝑏)

• Given that the alarm rings, what is the probability of a burglary?

• A query can be answered using a Bayesian network by computing sums of 
products of conditional probabilities from the network

• 𝑃(𝑏|𝑎) = 𝛼𝑃 𝑎, 𝑏 = 𝛼 σ𝑒 𝑃 𝑎, 𝑏, 𝑒 = 𝛼 σ𝑒 𝑃 𝑏 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒)

= 𝛼𝑃 𝑏 σ𝑒 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒) 

B E

A

𝑝(𝑏) 𝑝(𝑒)

𝑝 𝑎 𝑏, 𝑒)

𝑏𝟎 𝑏𝟏

0.95 0.05

𝒆𝟎 𝒆𝟏

0.95 0.05

𝒂𝟎 𝒂𝟏

𝒃𝟎, 𝒆𝟎 1 0

𝒃𝟎, 𝒆𝟏 0 1

𝒃𝟏, 𝒆𝟎 0 1

𝒃𝟏, 𝒆𝟏 0 1



Example (2)
𝑃(𝑏|𝑎) = 𝛼𝑃 𝑎, 𝑏 = 𝛼 σ𝑒 𝑃 𝑎, 𝑏, 𝑒 = 𝛼 σ𝑒 𝑃 𝑏 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒)

= 𝛼𝑃 𝑏 σ𝑒 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒) 

ℙ 𝑏 = 1, 𝑒 = 0, 𝑎 = 1 = 0.05 ∗ 0.95 ∗ 1 = 0.0475 

ℙ 𝑏 = 1, 𝑒 = 1, 𝑎 = 1 = 0.05 ∗ 0.05 ∗ 1 = 0.0025 

ℙ 𝑏 = 0, 𝑒 = 0, 𝑎 = 1 = 0.95 ∗ 0.95 ∗ 0 = 0 

ℙ 𝑏 = 0, 𝑒 = 1, 𝑎 = 1 = 0.95 ∗ 0.05 ∗ 1 = 0.0475 

• So, when the alarm goes off, the probability of a burglary increases! 

➢Since the value of 𝜀 is the same for earthquake, probabilities are the same when calculated

sum = 0.05

sum = 0.0475

Normalize

𝑏 𝒑(𝑏)

0
0.0475

0.05 + 0.0475
= 0.4871

1
0.05

0.05 + 0.0475
= 0.5128

Given that the alarm rings, what is the probability of a burglary?
Note: we don’t know anything about the earthquake.



We can also check the answer from the joint 
distribution table ..

𝐵 = 1 𝐴 = 1 =
𝑃 𝐵 = 1, 𝐴 = 1

𝑃 𝐴 = 1

=
 𝜖 1 − 𝜖 +  𝜖2

 0 + 1 − 𝜖 𝜖 +  𝜖 1 − 𝜖 +  𝜖2

=
 𝜖 1 − 𝜖 +  𝜖2

 2 ∗ 𝜖 1 − 𝜖 +  𝜖2

=
 0.05 ∗ 1 − 0.05 +  0.05 ∗ 0.05 

2 ∗ 0.05 ∗ 1 − 0.05 +  0.05 ∗ 0.05 
= 0.5128

𝑏 𝑒 𝑎 𝒑(𝒃) 𝒑(𝒆) 𝒑(𝒂|𝒃, 𝒆) ℙ 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎

0 0 0 1 − 𝜀 1 − 𝜀 1 1 − 𝜀 2

0 0 1 1 − 𝜀 1 − 𝜀 0 0

0 1 0 1 − 𝜀 𝜀 0 0

0 1 1 1 − 𝜀 𝜀 1 1 − 𝜀 𝜀

1 0 0 𝜀 1 − 𝜀 0 0

1 0 1 𝜀 1 − 𝜀 1 1 − 𝜀 𝜀

1 1 0 𝜀 𝜀 0 0

1 1 1 𝜀 𝜀 1 𝜀2

Probability rises



Example (3)
• Given that the alarm rings, what is the probability of a burglary if you know an earthquake

 happened?

𝑃(𝑏|𝑎 = 1, 𝑒 = 1) = 𝛼𝑃 𝑎, 𝑏, 𝑒 = 𝛼𝑃 𝑏 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒) 

• ℙ 𝑏 = 1, 𝑒 = 1, 𝑎 = 1 = 0.05 ∗ 0.95 ∗ 1 = 0.0475 

• ℙ 𝑏 = 0, 𝑒 = 1, 𝑎 = 1 = 0.95 ∗ 0.95 ∗ 1 = 0.9025 

• When the alarm goes off, but we know an earthquake happened, the probability of a burglary 

does not change! 

• This is Explaining Away that people do: if the alarm rings and we know there is an earthquake, 

we discount the possibility of a burglary being the cause

Normalize

𝑏 𝒑(𝑏)

0
0.0475

0.9025 + 0.0475
= 0.05

1
0.9025

0.9025 + 0.0475
= 0.95



Example (4)

Given that the alarm rings, what is the probability of both a burglary and an 

earthquake simultaneously?

• 𝑃 𝑏, 𝑒 𝑎 = 𝛼𝑃 𝑎, 𝑏, 𝑒 = 𝛼 𝑃 𝑏 𝑃 𝑒 𝑃(𝑎|𝑏, 𝑒) 

ℙ 𝑏 = 1, 𝑒 = 1, 𝑎 = 1 = 0.05 ∗ 0.05 ∗ 1 = 0.0025 

ℙ 𝑏 = 1, 𝑒 = 0, 𝑎 = 1 = 0.05 ∗ 0.95 ∗ 1 = 0.0475 

ℙ 𝑏 = 0, 𝑒 = 1, 𝑎 = 1 = 0.95 ∗ 0.05 ∗ 1 = 0.0475 

both = 0.0025

either one = 0.095

Normalize

𝒑(𝑏)

both
0.0025

0.0975
= 0. 0256

either
0.095

0.0975
= 0.9744



A Probabilistic 
Learning 
Algorithm
Naïve Bayes

26

Students



Naïve Bayes

• Naïve Bayes is a very simple model which is often used for classification. 

• Generative model

• Generative models: how the input is generated from the output

• Discriminative models: take the input and produce the output label

• Extremely easy and fast, just requires counting

Students



Applying Bayes Rule 𝑃 𝑎 𝑏 =
𝑃(𝑏|𝑎)𝑃(𝑎)

𝑃 𝑏

𝑃(cause|effect) =
𝑃(effect|cause)𝑃(cause)

𝑃 (effect)
                       𝑃(disease|symptom) =

𝑃(symtom|disease)𝑃(disease)

𝑃 (symptom)

• Example:

• Meningitis causes the patient to have a stiff neck 70% of the time

• The prior probability that a patient has meningitis is 1/50,000

• The prior probability that any patient has a stiff neck is 1%

Patient has a stiff neck. What is the probability the patient has meningitis?

𝑃 meningitis stiff neck =
𝑃 stiff neck meningitis 𝑃 meningitis

𝑃 stiff neck
=

0.7 ∗
1

50000

0.01

Diagnosis Causation

Students



Naïve Bayes Classifiers

• Naïve Bayes assumptions:

1. Feature independence: The features of the data are 
conditionally independent of each other, given the class 
label. 𝑃(𝐴, 𝐵)  =  𝑃(𝐴)𝑃(𝐵)

2. Continuous features are normally distributed: If a 
feature is continuous, then it is assumed to be normally 
distributed within each class.

3. Discrete features have multinomial distributions: If a 
feature is discrete, then it is assumed to have a 
multinomial distribution within each class.

4. Features are equally important: All features are assumed 
to contribute equally to the prediction of the class label.

5. No missing data: The data should not contain any missing 
values.

Students



Naïve Bayes Classifiers

• 𝑃 𝑦 𝑥1, … , 𝑥𝑛 =
𝑃(𝑥1|𝑦) × … × 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃 𝑥1  × … × 𝑃(𝑥𝑛)

• 𝑃 𝑦 𝑥1, … , 𝑥𝑛 =
𝑃 𝑦 ς𝑖=1

𝑛 𝑃(𝑥𝑖|𝑦)

𝑃 𝑥1  × … × 𝑃(𝑥𝑛)

1. 𝑃 𝑦 =
9

14

Students



Naïve Bayes Classifiers

• 𝑃 𝑦 𝑥1, … , 𝑥𝑛 =
𝑃(𝑥1|𝑦) × … × 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃 𝑥1  × … × 𝑃(𝑥𝑛)

• 𝑃 𝑦 𝑥1, … , 𝑥𝑛 =
𝑃 𝑦 ς𝑖=1

𝑛 𝑃(𝑥𝑖|𝑦)

𝑃 𝑥1  × … × 𝑃(𝑥𝑛)

1. 𝑃 𝑦 =
9

14

2. Calculate 𝑃(𝑥𝑖|𝑦𝑖)
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Naïve Bayes Classifiers
• today = (Sunny, Hot, Normal, False)

• 𝑃 𝑦 𝑥1, … , 𝑥𝑛 =
𝑃 𝑦 ς𝑖=1

𝑛 𝑃(𝑥𝑖|𝑦)

𝑃 𝑥1  × … × 𝑃(𝑥𝑛)

• 𝑃 yes S, H, N, F ∝ 𝑃 𝑦 ς𝑖=1
𝑛 𝑃(𝑥𝑖|𝑦)

=
9

14
∙

3

9
∙

2

9
∙

6

9
∙

6

9
≈ 0.02116

• 𝑃 no S, H, N, F ∝
9

14
∙

2

5
∙

2

5
∙

1

5
∙

2

5
≈ 0.0068

• Normalize:

𝑃 yes today =
0.02116

0.02116+0.0068
≈ 0. 757 

𝑃 no today =
0.0068

0.02116+0.0068
≈ 0. 243 
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