10 Group Homomorphisms
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B Definition: Group Homomorphism

Let G and G be groups. A mapping ¢ : G — G is called a group homomorphism if for all
a,b € G:p(ab) = p(a)p(b)

Terminology:

* If ¢ is both a homomorphism and one-to-one, it is a monomorphism

If 0 is both a homomorphism and onto, it is an epimorphism

If 0 is both a homomorphism and bijective, it is an isomorphism

A homomorphism from a group to itself is called an endomorphism

An isomorphism from a group to itself is called an automorphism
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B Definition: Kernel of a Homomorphism

letyp : G — G be a group homomorphism. The kernel of ©, denoted Ker , is the set:
Ker o = {9 € G | v(g) = €}. where €is the identity element of G.

Interpretation:

» The kernel consists of all elements in G that map to the identity in G
* The kernel measures "how far" ¢ is from being one-to-one

+ Ker ¢ = {e}ifand only if ¢ is a monomorphism (one-to-one)

Notation: Ker ¢ (most common). ker ¢ (lowercase also used). Sometimes ker((p) or
kernel(y).
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B EXAMPLE 1: Every Isomorphism is a Homomorphism
Explanation: By definition, an isomorphism ¢ : G — @G satisfies p(ab) = ¢(a)¢(b)

 This is precisely the homomorphism property

 Additionally, isomorphisms are bijective (one-to-one and onto)
Kernel Analysis: For any isomorphism ¢ : G — G

- Ker o = {e} where e is the identity of G

* Proof: If (p(g) — €, and @ is one-to-one, theng = e

Key Insight: A homomorphism is an isomorphism <= itis bijective <= Ker ¢ = {e}
and ¢ is onto.
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B EXAMPLE 2: The Determinant Homomorphism:

The determinant mapping ¢ : GL(2,R) — R*: ¢(A) = det(A) for any matrix
A € GL(2,R) is a group homomorphism. Where:

- G = GL(2,R) = {2 x 2 invertible real matrices} under matrix multiplication

- G = R* = {nonzero real numbers} under multiplication

Verification of Homomorphism Property: For any matrices A, B € GL(2,R):
o(AB) = det(AB) = det(A) - det(B) = ¢(A)p(B), Thisis a fundamental

property from linear algebra.

Kernel Calculation: Ker(det) = {A € GL(2,R) | det(A4) = 1} = SL(2,R). This s

the special linear group.
Properties:

- det is onto (surjective): every nonzero real number is the determinant of some matrix

- det is not one-to-one: many matrices have the same determinant

» The kernel SL(2,R) is a normal subgroup of GL(2, R)
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B EXAMPLE 3: Absolute Value Homomorphism

The absolute value mapping ¢ : R* — R* defined by p(x) = || is a group
homomorphism.

Verification: The absolute value preserves multiplication: |zy| = |z| - |y|
Kernel: Ker p = {z € R* | |[z| =1} ={-1,1}
Note: If we consider R under addition, then () = || is NOT a homomorphism because:

c 92+ (-3) =w(-1)=1#p(2) +¢(-3)=2+3=5
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B EXAMPLE 4: The Derivative Operator

letG ={f | f : R — R is a differentiable function} under function addition.
The derivative mapping (f) = f'is a group homomorphism from G to itself.

Verification: For any differentiable functions f, g:
o(f+9) =(f+ g)' =f'+4 = ©(f) + ©(g). This is the sum rule from calculus.

Kernel Calculation: Ker o = {f € G | f' = 0}
These are precisely the constant functions: Ker ¢ = {f(z) = ¢ | ¢ € R}
Additional Properties:

* This homomorphism is onto (every function is the derivative of some function)
* This homomorphism is not one-to-one (many functions have the same derivative)

 The kernel (constant functions) forms a normal subgroup.
Generalization:

« This extends to polynomial rings: ¢ : R[z] — R|z]

« For polynomials, Ker ¢ = {constant polynomials} =~ R
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B EXAMPLE 8: The Squaring Function

The mapping ¢ : R* — R* defined by p(z) = 2 is a group homomorphism when R*

has multiplication as its operation.

Verification: For p(xy) = p(x)@(y) because (wy)g =z -y

Where Squaring Fails: If we consider (R, —I—) under addition:

co(@ty)=(z+y)° =2 + 2y + 9
co(z) +oly) =" +y°
 These are NOT equal (unless xy = 0)
> (p(a':) = 22152 homomorphism from (R*, ) to (R*, )
- p(x) = 22 is NOT a homomorphism from (R, +) to (R, +)

» The group operation determines whether a map is a homomorphism
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Well-Defined Mappings

Caution: When defining a homomorphism from a group with multiple element representations,
ensure the correspondence is a function.

Example: The mapping = + (3) — 3z from Z /(3) to Z is NOT well-defined:
e 0+(3)=3+(3)InZ/(3)
e But3-0#3-3inZ

Linear Algebra Connection: Every linear transformation is a group homomorphism.
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Theorem 10.1: Properties of Homomorphisms w.r.t elements

Let ¢ be a homomorphism from G to G’ and let g € G. Then:

1.

¢ carries the identity of G to the identity of G’ (If ¢ is the identity in G, then ¢(e) is the
identity in G)
#(g") = (¢(g))" foralln € Z (Homomorphisms preserve powers)

If |g| is finite, then |¢(g)| divides |g| (The order of an image divides the order of the
element)

Ker ¢ is a subgroup of G (The kernel forms a subgroup)

¢(a) = ¢(b) ifand onlyif a Ker ¢ = b Ker ¢ (Elements have the same image if and only
if they're in the same coset of Ker ¢)

fp(g) = g, thend '(g') = {z € G | ¢(z) = ¢’} = g Ker ¢ (Theinverse image of an
element is a coset of the kernel)
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Theorem 10.2: Properties of Subgroups Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G
and let H be a subgroup of G. Then

SN

[ S e

10.
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d(H) = {¢p(h) | h € H} is a subgroup of G.

. If H is cyclic, then ¢p(H) is cyclic.
. If H is Abelian, then ¢(H) is Abelian.

If H is normal in G, then ¢(H) is normal in ¢(G).
If |Ker ¢| = n, then ¢ is an n-to-1 mapping from G
onto ¢(G).

. If H is finite, then |¢p(H)| divides |H|.

. #(Z(G)) is a subgroup of Z(p(G)).
. If K is a subgroup of G then ¢~ 1(K) ={k € G | ¢(k) €

K} is a subgroup of G.

. If K is a normal subgroup of G, then ¢~ (K) = {k €

G | (k) € K} is a normal subgroup of G.
If ¢ 1s onto and Ker ¢ = {e}, then ¢ is an isomorphism
from G to G.
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Corollary: Kernels Are Normal
Let ¢ be a group homomorphism from G to G'. Then:
Ker ¢ is a normal subgroup of (.

This follows from property 8 of Theorem 10.2, with K = {e}.

Example 8: Complex Numbers

Consider the mapping ¢ from C* to C* given by ¢(z) = z?:

Since (a:y)4 — :c4y4, ¢ is a homomorphism

Kergp = {z | z* =1} = {1,—1,i,—i}

By Theorem 10.2 (5), ¢ is a 4-to-1 mapping
Elements mappingto2: ¢ 1(2) = v/2 - Ker ¢ = {V/2, —v/2, iv/2, —iv/2}
Verifying Theorem101(3): H = (cos 30" + ¢sin30°) has |H| = 12,but |¢(H)| = 3
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Example 9: Modular Arithmetic

Define ¢ : Zis — Zqo by ¢p(x) = 3x:

e ¢ isahomomorphismsince 3(a + b) = 3a + 3bin Z1s
Ker ¢ = {0, 4, 8}

By Theorem 10.2 (5), ¢ is a 3-to-1 mapping

¢ '(6) =2+ Ker ¢ = {2,6,10}

1(2)| = 6and|p(2)| = |6] = 2,s0|h(2)] divides |2
For K = {0,6},¢ *(K) = {0,2,4,6,8,10}
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Example 10: Homomorphisms Between Cyclic Groups
Determining all homomorphisms from Z.15 to Zsp:

e A homomorphism is specified by the image of 1

If 1 maps to a, then x maps to xa

By Theorem 101 (3),

a| must divide both 12 and 30

Sola| =1,2,3,0r6

Thismeansa = 0,105, 10, 20, 5, or 25

Each of these six possibilities yields a valid homomorphism

Note: gcd(12, 30) = 6 (not a coincidence)
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Theorem 10.3: First Isomorphism Theorem (Jordan, 1870)
Let ¢ be a group homomorphism from G to G'. Then: G /Ker ¢ =~ ¢(Q)
The mapping from G /Ker ¢ to ¢(G) given by: g Ker ¢ — ¢(g) is an isomorphism.
Proof of First Isomorphism Theorem
Let 1) denote the correspondence g Ker ¢ — ¢(g)
1. 1) is well-defined by Theorem 101 (5)
o Ifg Ker ¢ = h Ker ¢,then ¢(g) = ¢(h)
2. 1) is one-to-one by Theorem 101 (5)
o If¢(g) = ¢(h),theng Ker ¢ = h Ker ¢
3. 1) is operation-preserving:

Y (xzKer ¢ - yKer ¢) = p(zyKer ¢) = ¢d(zy) = o(x)d(y) = ¥ (xKer ¢)v(yKer ¢)
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Corollary 1: If ¢ is a homomorphism from a finite group G to G, then

G|/ [Ker ¢| = |¢(G)|.
Proof: follows directly from Theorem 10.3.

Corollary 2: If ¢ is a homomorphism from a finite group G to G, then |¢(G)| divides |G|
and |G|

Proof: follows directly from Theorem 10.3, property 1 of Theorem 10.2, and Lagrange's

Theorem.
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Corollary: If ¢ is a homomorphism from a finite group G to G, then |¢(G)| divides |G| and |G’|.

Commutative Diagram for First Isomorphism Theorem

G 0 - 0(G)

/4 W

G/Ker ¢
Where:

e v:G — G/Ker ¢isthe natural mapping v(g) = g Ker ¢
.« Py =

e This diagram is commutative
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Examples Using First Isomorphism Theorem
Example15:Z./(n) = 7Z,

o Consider the mapping ¢ : Z — Z,, where ¢(m) =m mod n
o Kernelis (n) (multiples of 1)

e By Theorem10.3,Z/(n) = 7Z,

Example 16: Wrapping Function

W : R — circle group, where W (z) = cosz + ¢sinx

This is a homomorphism: W (z + y) = W (z)W (y)
Ker W = (2m)

Therefore, R /(27) = circle group
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EXAMPLE 15 Determinant-induced quotient isomorphisms

- Quotient by SL(2, R)
» Normal subgroup: SL(2,R) = {A € GL(2,R) | det A = 1}.
« Homomorphism: ¢ : GL(2,R) — R*, ¢(A) = det A (surjective:

t 0 .
det(0 1)—tforanyt€R).

- Kernel: Ker ¢ = SL(2,R).
» Conclusion (Thm.10.3): GL(2,R)/SL(2,R) ~ R*.
- Quotient by SL*(2, R)
» Normal subgroup: SL=(2,R) = {A € GL(2,R) | det A = +1}.

« Homomorphism: 9 : GL(2,R) — R, 4(A) = (det A)? (surjective: forr > 0,

choose A with det A = ++/7).
« Kernel: Keryp = SL*™(2,R).
- Conclusion (Thm. 10.3): GL(2,R)/SL*(2,R) ~ R*.
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EXAMPLE 16 Let G be Abelianand k € Z ™.

+ Notation: G* := {z" |z € G}, G(k) :={x € G | " =€}
+ Map: ¢ : G — G* defined by ¢(z) = z".

+ Homomorphism: ¢(zy) = (zy)* = z"y" (since G is Abelian).
+ Surjectivity: By definition, the image of ¢ is G*.

+ Kernel: Ker ¢ = {z € G | " = e} = G(k).

+ Conclusion (Thm.10.3): G/G(k) ~ G*.
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EXAMPLE 17: The N/C Theorem

Let H be a subgroup of a group GG. Define:

- N(H)={g€ G| gHg ' = H }, the normalizer of H in G
+ C(H) =49 € G| gh = hgfor all h € H}, the centralizer of H in G

Key Facts:

1. C(H)C NH)CAG
2. C(H)is anormal subgroup of N(H)
3. H isanormal subgroup of N (H) (by definition of normalizer)
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The Homomorphism: Define ¢ : N(H) — Aut(H ) (the group of automorphisms of H)
by
#(g)(h) = ghg ' forallh € H.

Forg € N(H),themap ¢(g) : H — H isindeed an automorphism of H (it's the
restriction of the inner automorphism of G by g to the subgroup H).

Kernel: Ker ¢ = {g € N(H) | ghg ' = hforallh € H} = C(H).
Application of First Isomorphism Theorem: N (H ) /C(H) = ¢(N(H)) C Aut(H).
This is called the N/C Theorem:.

Interpretation: The quotient N (H ) /C(H ) measures "how many distinct ways" elements
of N(H) can act on H by conjugation. Elements in the same coset of C'(H ) act on H in
the same way.
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Theorem 10.4: Normal Subgroups Are Kernels

Every normal subgroup of a group (5 is the kernel of a homomorphism of ;.

In particular, a normal subgroup IV is the kernel of the mapping: g — g/N
from G to G/N.

Proof
Definev) : G — G /N by)(g) = gN (the natural homomorphism)

1. 1) isa homomorphism:

P(zy) = (zy)N = aN - yN = (z)i(y)
2. g € KertifandonlyifgN =(g) = N

e Thisistrueifandonlyifg € N

Therefore, Ker ) = N
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Using Homomorphisms to Simplify Problems

Problem Find an infinite group that is the union of three proper subgroups

Strategy: Simplify First
1. Start with a finite case — easier to analyze

2. Use homomorphisms to lift the solution to the infinite case

Step 1: Find a Finite Solution

* No cyclic group works (cannot be unin of proper subgroups)

* Try smallest noncyclic group: order 4
- Solution: U (8) = {1,3,5,7}
- U(8)=HUKU Lwheree H=1{1,3}, K ={1,5}, L = {1,7}
Step 2: Lift to Infinite Group
- Defineg: U(8)BZ — U(8) by ¢(a,b) =a
+ Answer:U(8) @ Z = ¢ '(H)U ¢ (K)U ¢ (L)
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B EXAMPLE21Clam Z @ Z %2 7. D 7 @ 7.
Proof: Assume (for contradiction): There exists an isomorphism

ca: LBL - LDLD L

Reduce mod 2:
- Define B : Z° — Z‘;’ by
- B(z,y,2) = (z mod 2, y mod 2, z mod 2).
« Compose:
e+ y=Boa:Z*— Zg is a homomorphism.
» Since axis onto and B is onto, 7y would be onto.
« Generator count:
- 7?is generated by (1, 0) and (0, 1).
* Hence Im +y is generated by 'y(l, 0) and ')/(0, 1) (at most 2 generators).
* Key fact: Any subgroup of Z% generated by 2 elements has order at most 4.

* Contradiction: Zg has order 8, so <y cannot be onto.

« Conclusion: No such  exists. Therefore, Z @ 7 2 7. ® 7. B 7.
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