

Lecture 10

Screening Tests for Sickle Cell Anemia: Sickling and Solubility Test

Outlines

I. Background

- i. Normal Hemoglobin Production
- ii. Hb S Mutation and Polymerization
- iii. Hereditary of Sickle Cell Anemia
- iv. Abnormal Hemoglobin
- II. Lab Tests for the Diagnosis of Sickle Cell Anemia
- i. Sickling Test
- ii. Sickle Solubility test

Normal Hemoglobin Production

Hb A

- Red blood cells with <u>normal hemoglobin</u> are smooth, disk-shaped, and **flexible**. Thus, they can move through the blood vessels easily.
- Hb A can tolerate low oxygen tension.
- Pure **deoxy-Hb A** is totally **soluble** in concentrate phosphate buffer.
- If a person inherits the normal Hemoglobin A gene from each parent, the Hb <u>genotype is HbAA</u>.

Table 2.3 Normal haemoglobins in adult blood.

	Hb A	Hb F	Hb A ₂
Structure	$\alpha_2 \beta_2$	$\alpha_2 \gamma_2$	$\alpha_2 \delta_2$
Normal (%)	96–98	0.5–0.8	1.5–3.2

Hb S Mutation and Polymerization

• Hb S: is abnormal Hb resulting from a mutation in the **beta-globin gene**.

Hb S Polymerization

- Under low-oxygen tension, HbS chains polymerize and form rigid, rod-like fibers that precipitate inside RBCs, resulting in the characteristic crescent (sickle) shape.
- Low oxygen tension can be caused by:
 - Change temperature
 - High altitude
 - Dehydration
 - Stress

Hereditary of Sickle Cell Anemia

Hb-S genotypes:

- The Homozygous (S/S) genotype is found in Sickle Cell Anemia affected patients.
 - HbSS individual has (2α2βs)
- The Heterozygous (A/S) genotype is found in Sickle Cell Trait (carrier patients).
 - HbSA individual has (2α1β1βs)

Abnormal Hemoglobin

- A patient can have more than one abnormal Hb:
 - HbS/HbC
 - HbS/ Thalassemia
 - HbS/HbS (sickle cell disease)
 - HbS/normal HbA (sickle trait)

Lab Tests for the Diagnosis of Sickle Cell Anemia

- Screening test for SCA:
 - 1. Hb concentration is low.
 - 2. Blood film shows sickle cells.
 - 3. The sickling test is positive.
 - 4. The solubility test gives a positive result.

• The screening test <u>does not differentiate</u> between the <u>carrier</u> (heterozygous) and <u>diseased</u> (homozygous) patients.

Blood Film Morphology in Sickle Cell Anemia

Blood Film Morphology of Sickle Cell Case:

• Shows Sickle cell, boat-shape, target cell, and nucleated RBC.

Shows a sickled cell, boat-shaped cells, and a nucleated red cell and target cells.

Shows a sickled cell, boat-shaped cells, and a nucleated red cell and target cells.

Lab Tests for the Diagnosis of Sickle Cell Anemia

• Specific test:

- 1. Electrophoresis: shows the presence of Hb S and <u>variation in Hb A and Hb F.</u>
- High-performance liquid chromatography (HPLC): shows the presence of Hb S and variation in Hb A and Hb F.
- 3. DNA analysis: shows the <u>mutation</u> in the beta globulin gene.

Detection of mutation by sequencing

i. Sickling Test

Principle

- Red cells which carry HbS will change their shapes from round shape to sickle shape under low oxygen tension.
- This situation can be induced in vitro by adding a <u>deoxygenating agent</u> such as sodium metabisulphite.
- <u>Red cells</u> with Hb A will not be affected and will maintain their rounded shape.

i. Sickling Test

- **Reagent**: 2% sodium metabisulphite.
- **Material**: rack, tube, slides, coverslip, pasture pipette, nail polish, EDTA Whole blood sample, filter paper.
- Procedure:
 - 1. On a tube, add 1 small drop of EDTA blood sample + 4 drops of sodium metabisulphite.
 - 2. Mix.
 - 3. Take a small drop-by pasture pipette and put on a slide and cover it with a coverslip.
 - 4. Seal the coverslip with nail polish. (to prevent oxygen from entering)
 - 5. Put it inside a wet Petri dish (wet filter paper or cotton ball).
 - 6. Incubate it for an hour at 37°C.
 - 7. Examine it under the microscope at (40X).

i. Sickling Test

Result interpretation:

- A positive test shows sickle cells under the microscope.
- Hb-S may be present as a homozygous trait of Hb SS.
- or with other hemoglobin, such as:
 - Hemoglobin A \rightarrow Hb AS
 - Hemoglobin C \rightarrow Hb S/C
 - Thalassemia → Hb S /thalassemia
- A negative test shows rounded cells under the microscope with the absence of sickle cells.
 - Indicate that the hemoglobin inside the cells is either of Hb AA trait or other non-sickled Hb traits.

ii. Sickle Solubility test

- **Deoxyhaemoglobin-S** has <u>poor solubility</u> in concentrated phosphate buffer.
- As in the sickling test, it is used to identify the presence of Hb S and will not distinguish between the heterozygous trait (HbAS) and the homozygous disease (HbSS) trait (screening test).

Principle:

- Erythrocytes are lysed by saponin
- **released** hemoglobin is **reduced** by dithionite in a phosphate buffer.
- Reduced **Hb-S** is characterized by its very <u>low solubility</u> and by the formation of nematic liquid crystals (tactoids) so that in the presence of Hb-S, the solution will show turbidity.
- Hb A is more soluble in the reduced buffer and thus will show <u>no turbidity</u>.

ii. Sickle Solubility test

- **Reagents:** lysing buffer and sodium dithionite.
- Materials: rack, tubes, pasture pipette, tips, micropipette rack with lines.
- Method:
 - 1. Prepare the working solution as in the leaflet.
 - 2. Add 2 ml of working solution buffer to a glass tube.
 - 3. Add 20 µl of EDTA blood sample.
 - 4. Run Positive and negative Control with every batch.
 - 5. Mix by inversion and allow to stand for several minutes (depending on the used kit)
 - 6. Place the tube against a white rack on which thick bold lines have been drawn.
 - 7. View the black lines through the solution.

ii. Sickle Solubility Test

Results:

- Compare with Negative and positive Control Solutions when reading the result.
- If the tube that shows turbidity in which the black lines are not seen is considered a **positive result**, indicating the presence of HbS.
 - All positive results should be <u>confirmed on</u> <u>electrophoresis.</u>
- A clear tube in which the black lines are seen is considered a **negative test result**, and it Indicates the absence of HbS.

Hb AS/SS Hb AA

Positive result black lines are not seen (turbid) presence of HbS

Negative result black lines are seen absence of HbS.