
1.4 FEATURE ENGINEERING CSC 462 [THPMLB:5,HMLSKT:2]

1



OUTLINE
▪ “Data Mining” vs. “Machine Learning”

▪ Sources of Data for Features

▪ Feature Engineering Overview

▪ Converting Between Feature Types

▪ One-Hot Encoding

▪ Binning

▪ Normalization

▪ Scaling

▪ Dealing with Missing Values
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“DATA MINING” VS. “MACHINE LEARNING”
▪ Machine learning and data mining often employ the same methods and overlap significantly.

▪ But while machine learning focuses on prediction, based on known properties learned from the training data, 
data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of 
knowledge discovery in databases).

▪ Data mining uses many machine learning methods, but with different goals.

▪ On the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a 
preprocessing step to improve learner accuracy. 

▪ Much of the confusion between these two research communities (which do often have separate conferences and 
separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with.

▪ In machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, 
while in knowledge discovery and data mining (KDD) the key task is the discovery of previously unknown 
knowledge. 

▪ Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed 
by other supervised methods, while in a typical KDD task, supervised methods cannot be used due to the 
unavailability of training data. 



SOURCES OF DATA FOR FEATURES

System State
 App in foreground?

 Roaming?

 Sensor readings

Content Analysis
 Stuff we’ve been talking about

 Stuff we’re going to talk about next

User Information
 Industry

 Demographics

Interaction History
 User’s ‘report as junk’ rate

 # previous interactions with sender

 # messages sent/received

Metadata
 Properties of phone #s referenced

 Properties of the sender

 Run other models on the content

 Grammar

 Language

 …



GOALS OF FEATURE ENGINEERING

▪ Convert ‘context’ -> input to learning algorithm.

▪ Expose the structure of the concept to the learning algorithm.

▪ Work well with the structure of the model the algorithm will create.

▪ Balance number of features, complexity of concept, complexity of model, amount of 
data.



SAMPLE FROM SMS SPAM
▪ SMS Message (arbitrary text) -> 5 dimensional array of binary features

▪ 1 if message is longer than 40 chars, 0 otherwise

▪ 1 if message contains a digit, 0 otherwise

▪ 1 if message contains word ‘call’, 0 otherwise

▪ 1 if message contains word ‘to’, 0 otherwise

▪ 1 if message contains word ‘your’, 0 otherwise

Long? HasDigit? ContainsWord(Call) ContainsWord(to) ContainsWord(your)

“SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ 

TsandCs apply Reply HL 4 info”



BASIC FEATURE TYPES
Binary Features

▪ ContainsWord(call)?

▪ IsLongSMSMessage?

▪ Contains(*#)?

▪ ContainsPunctuation?

Numeric Features

• CountOfWord(call)

• MessageLength

• FirstNumberInMessage

• WritingGradeLevel

Categorical Features

• FirstWordPOS ->

{ Verb, Noun, Other }

• MessageLength ->

{ Short, Medium, Long, VeryLong }

• TokenType ->

{ Number, URL, Word, Phone#, Unknown }

• GrammarAnalysis ->

• { Fragment, SimpleSentence, 
ComplexSentence }



CONVERTING BETWEEN FEATURE TYPES
Numeric Feature => Binary Feature

Length of text + [ 40 ] => { 0, 1 }

Numeric Feature => Categorical Feature

Length of text + [ 20, 40 ] => { short or medium or long }

Categorical Feature => Binary Features

{ short or medium or long } => [ 1, 0, 0] or [ 0, 1, 0] or [0, 0, 1]

Binary Feature => Numeric Feature

{ 0, 1 } => { 0, 1 }

Single threshold

Set of thresholds 

One-hot encoding

…



ONE-HOT ENCODING
▪ Some learning algorithms only work with numerical feature vectors. 

▪ Transform categorical feature into several binary ones -> increase the dimensionality of the 
feature vectors.

▪ You should not transform red into 1, yellow into 2, and green into 3 to avoid increasing the 
dimensionality because that would imply that there’s an order among the values in this 
category and this specific order is important for the decision making.
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BINNING (BUCKETING)
▪ When you have a numerical feature but you want to convert it into a categorical one. 

▪ Binning is the process of converting a continuous feature into multiple binary features 
called bins or buckets, typically based on value range. 

▪ For example, instead of representing age as a single real-valued feature, the analyst 
could chop ranges of age into discrete bins: all ages between 0 and 5 years-old could 
be put into one bin, 6 to 10 years-old could be in the second bin, 11 to 15 years-old 
could be in the third bin, and so on.
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NORMALIZATION (NUMERIC => BETTER NUMERIC)
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Normalize

Mean
Raw X

Normalize

Variance

Mean: 74.875
Mean: 0

Std: 29.5188

Mean: 0

Std: 1

Subtract

Mean

Divide by

Stdev

Helps make model’s job easier

• No need to learn what is 

‘big’ or ‘small’ for the 

feature

• Some model types benefit 

more than others

To use in practice:

• Estimate mean/stdev on 

training data

• Apply normalization using 

those parameters to 

validation /train

Z-score Normalization



FEATURE NORMALIZATION

▪ We can speed up gradient descent by having each of our input values in 
roughly the same range

▪ Two techniques to help with this are feature scaling and mean normalization

1. Feature scaling: involves dividing the input values by the range (i.e. the maximum value minus 
the minimum value) of the input variable, resulting in a new range of just 1.

2. Mean normalization: involves subtracting the average value for an input variable from the 
values for that input variable, resulting in a new average value for the input variable of just 
zero.
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FEATURE SCALING
A significant issue is that the range of the feature 
may differ a lot. Using the original values may 
put more weights on the features with a large 
range. 

In order to deal with this problem, we need to 
apply the technique of feature rescaling (either 
normalization and standardization) as a pre-
processing step (do not apply to 𝑥0 = 1). 

The goal of applying Feature Scaling is to make 
sure features are on almost the same scale so that 
each feature is equally important and make it 
easier to process by most ML algorithms.
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𝑥1= size (0-2000 feet2)

𝑥2= number of bedrooms (1-5)

Gradient Descent with and without feature scaling



FEATURE SCALING

▪ Get every feature into approximately −1 ≤ 𝑥𝑖 ≤ 1 range

▪ Do not apply to 𝑥0 = 1

▪ Good:

 0 ≤ 𝑥𝑖 ≤ 3

 −2 ≤ 𝑥𝑖 ≤ 0.5

 −3 ≤ 𝑥𝑖 ≤ 3

 −0.5 ≤ 𝑥𝑖 ≤ 0.3

▪ Bad:

 −100 ≤ 𝑥𝑖 ≤ 100

 −0.00001 ≤ 𝑥𝑖 ≤ 0.00001
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1. MEAN NORMALIZATION

▪ Replace 𝑥𝑖 with 𝑥𝑖 − 𝜇𝑖  to make features have approximately zero mean

▪ Do not apply to 𝑥0 = 1

▪ 𝜇𝑖 is the average value of 𝑥𝑖 in the training set

▪ You then divide by the range (i.e. the maximum value minus the minimum value) of the feature 

▪ 𝑥1 =
𝑠𝑖𝑧𝑒 (𝑓𝑒𝑒𝑡)2 − 𝜇1

2000 − 0
 , e.g.  𝑥1 =

𝑠𝑖𝑧𝑒 (𝑓𝑒𝑒𝑡)2 − 1000

2000

▪ 𝑥2 =
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𝑥𝑖 =
𝑥𝑖 − 𝜇𝑖

max
𝑖

− min
𝑖



2. MIN-MAX NORMALIZATION
▪ Normalization (AKA min-max scaling) is the process of converting an actual range of values 

which a numerical feature can take, into a standard range of values, typically in the interval 
[−1, 1] or [0, 1]. 

where min(𝑗) and max(𝑗) are, respectively, the minimum and the maximum value of the 
feature j in the dataset.

▪ Why do we normalize? Normalizing the data is not a strict requirement. However, in practice, 
it can lead to an increased speed of the training process.

▪ Additionally, it’s useful to ensure that our inputs are roughly in the same relatively small range 
to avoid problems related to working with very small or very big numbers (known as 
numerical overflow).
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𝑥𝑖 =
𝑥𝑖 − min

𝑖

max
𝑖

− min
𝑖



3. STANDARDIZATION

▪ Standardization (or z-score normalization) is the procedure during which the 
feature values are rescaled so that they have the properties of a standard normal 
distribution with 𝜇 =  0 and  𝜎 =  1, where 𝜇 is the mean (the average value of the 
feature, averaged over all examples in the dataset) and 𝜎 is the standard deviation 
from the mean.

▪ Standard scores (or z-scores) of features are calculated as follows:
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𝑥𝑖 =
𝑥𝑖 − 𝜇𝑖

𝜎𝑖



NORMALIZATION VS STANDARDIZATION

▪ When you should use normalization and when standardization. 
Usually, if your dataset is not too big and you have time, you can try 
both and see which one performs better for your task.

▪ If you don’t have time:

 unsupervised learning algorithms, in practice, more often benefit from 
standardization than from normalization;

 standardization is also preferred for a feature if the values this 
feature takes are distributed close to a normal distribution (so-called 
bell curve);

 standardization is preferred for a feature if it can sometimes have 
extremely high or low values (outliers); 

 In all other cases, normalization is preferable.
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DEALING WITH MISSING FEATURES

▪ In some cases, values of some features can be missing. 

▪ That often happens when the dataset was handcrafted, and the person working on it forgot to 
fill some values or didn’t get them measured at all.

▪ The typical approaches of dealing with missing values for a feature include:

1. Removing the whole attribute if most of its values are missing.

2. Removing the examples with missing features from the dataset (that can be done if your dataset is big enough 
so you can sacrifice some training examples);

3. Using a learning algorithm that can deal with missing feature values (depends on the library and a specific 
implementation of the algorithm);

4. Using a data imputation technique.
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Reference: Garcá-Laencina, P. J., Sancho-Gómez, J.-L. & Figueiras-Vidal, A. R. (2010), ‘Pattern classification 

with missing data: a review’, Neural Computing and Applications 19(2), 263–282.



DATA IMPUTATION

Data imputation means substituting the missing value. There are several techniques 
including the following.

1. Statistical imputation methods.

2. Imputation based on machine learning methods.

3. Model-based methods.
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STATISTICAL DATA IMPUTATION METHODS
▪ Mean imputation: For each attribute having missing values, an alternative value can be formed using methods such as the following.

 Global average–global mode (GA–GM) method. If the attribute is numeric, then the average value is computed, and used to 
replace each missing value of that attribute. Otherwise, the mode (the most common value) is used in the case of nominal 
attributes. 

 Concept average–concept mode (CA–CM) method is a more sophisticated version of the GA–GM method.  It works in a similar 
fashion, however, the average (and mode) is computed per concept. That is, to use the same average (or mode) for instances that 
belong to the same class of the instance with a missing value at hand.

▪ Regression imputation: Regression methods are suited when there is a correlation between available and missing variables. A 
regression model is trained to approximate the missing value, where the outcome is the missing variable, and the input is all the 
remaining available variables.

▪ Hot and cold deck imputation: 

 In hot deck imputation, the case that is most similar (according to some similarity measure) to the one with missing value(s) is 
identified. Missing values are substituted with the same corresponding values in the most similar case. 

 In cold deck method, the search for a most similar case is performed using a different data source. 

 The problem with this method is that the imputation is based on a single case ignoring global properties of the dataset.

▪ Multiple imputation: This method reflects the uncertainty associated with a missing value. Multiple datasets are generated, each 
with a possible value of the missing one. Each of the datasets are analyzed and then results are combined in some manner (for 
example see (Grzymala-Busse 1991)). For numeric attributes, the possible values can be the associated discretization intervals.
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IMPUTATION BASED ON MACHINE LEARNING 
METHODS

▪ A model is built to predict the missing value in a certain feature based on 
available features. 

▪ Different machine learning methods are used including k-NN, SVM, and ANN. 

▪ A separate model has to be built for each attribute having missing values. 

▪ These methods are generally robust, however the main drawback is their high 
computational cost.
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MODEL-BASED METHODS

▪ These methods (Dempster et al. 1977, Gourraud et al. 2004, Schneider 2001) are 
based on assumptions about the statistical probability distribution of the variables in 
the model. 

▪ In the expectation-maximization (EM) algorithm, the parameters of the probability 
distribution model for the incomplete dataset are estimated. 

▪ An iterative process of two steps follows. 

 In the E-step, missing values are imputed based on their conditional expectation values. 

 In the M-step, the parameters are re-estimated based on the complete dataset. 

▪ The two steps are iterated until the imputed values and the estimated parameters 
stop changing markedly from one cycle to another.
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