
1.3 NOTATION AND DEFINITIONS CSC 462 [THPMLB-2]
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DATA STRUCTURES -1
▪ A scalar is a simple numerical value, like 15 or −3.25.

▪ Variables or constants that take scalar values are denoted by an italic 
letter, like x or a.

▪ A vector is an ordered list of scalar values, called attributes. We 
denote a vector as a bold character, for example, x or w.

▪ We denote an attribute of a vector as an italic value with an index, 
like this: w(j) or x(j). The index j denotes a specific dimension of the 
vector, the position of an attribute in the list. For instance, in the vector 
a shown in red in Figure 1, a(1) = 2 and a(2) = 3.

▪ A variable can have two or more indices, like this:𝑥𝑗
(𝑖)

 or like this 𝑥𝑖,𝑗
(𝑘)
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DATA STRUCTURES -2

▪ A matrix is a rectangular array of numbers arranged in rows and columns.

 Example 
2 4 −3

21 −6 −1

 Matrices are denoted with bold capital letters, such as A or W.

▪ A set is an unordered collection of unique elements. We denote a set as a 
calligraphic capital character, for example, S.

 for example, {1, 3, 18, 23, 235} or {𝑥1, 𝑥2, … , 𝑥𝑛}

 If a set includes all values between a and b, including a and b, it is denoted using brackets 
as [a, b].

 If the set doesn’t include the values a and b, such a set is denoted using parentheses like this: 
(a, b).
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CAPITAL SIGMA AND PI

▪ σ𝑖=1
𝑛 𝑥𝑖 = 𝑥1 + ⋯ + 𝑥𝑛

▪ σ𝑗=1
𝑚 𝑥(𝑗) = 𝑥(1) + ⋯ + 𝑥(𝑚)

▪ ς𝑖=1
𝑛 𝑥𝑖 = 𝑥1 ∙  … ∙ 𝑥𝑛

▪ 𝑎 ∙ 𝑏 means 𝑎 multiplied by 𝑏 and in short denoted by 𝑎𝑏
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OPERATIONS ON SETS AND VECTORS -1

▪ Operations on sets example: 𝑆′ = 𝑥2 𝑥 ∈ 𝑆, 𝑥 > 3

▪ Operations on vectors:

 Sum of two vectors 𝒙 + 𝒛 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 [𝑥 1 + 𝑧 1 , 𝑥 2 + 𝑧 2 , … , 𝑥 𝑚 + 𝑧 𝑚 ]

 Difference of two vectors 𝒙 − 𝒛 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 [𝑥 1 − 𝑧 1 , 𝑥 2 − 𝑧 2 , … , 𝑥 𝑚 − 𝑧 𝑚 ]

 A vector multiplied by a scalar is a vector: 𝒙𝑐 = [𝑐𝑥 1 , 𝑐𝑥 2 , … , 𝑐𝑥 𝑚 ]

 A dot-product of two vectors is a scalar. Example, 𝒘 ∙ 𝒙 = 𝒘𝒙 = σ𝑖=1
𝑚 𝑤 𝑖 𝑥 𝑖
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OPERATIONS ON SETS AND VECTORS -2
▪ The multiplication of a matrix W by a vector x results in another vector.

▪ When the vector is on the left side of the matrix in the multiplication, then it has to be
transposed before we multiply it by the matrix.

 If 𝒙 = 𝑥 1

𝑥 2
, then 𝒙𝑇 = [𝑥 1 , 𝑥 2 ]

▪ The multiplication of the vector 𝒙 by the matrix 𝑾 is given by 𝒙𝑇𝑾
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FUNCTIONS
▪ A function is a relation that associates each element 𝑥 of a 

set 𝑋, the domain of the function, to a single element 𝑦 of 
another set 𝑌, the codomain of the function.

▪ If the function is called 𝑓, this relation is denoted 𝑦 =  𝑓(𝑥).

▪ 𝑓(𝑥) has a local minimum at 𝑥 =  𝑐 if 𝑓(𝑥)  ≥ 𝑓(𝑐) for 
every 𝑥 in some open interval around 𝑥 =  𝑐.

▪ The minimal value among all the local minima is called the 
global minimum.

▪ A vector function, denoted as 𝒚 =  𝒇(𝑥) is a function that 
returns a vector 𝒚. It can have a vector or a scalar argument.
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MAX AND ARG MAX

Given a set of values 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, 

▪ The operator max
𝑎∈𝐴

𝑓(𝑎) returns the highest value 𝑓(𝑎) for all elements in the set 𝐴. 

▪ The operator arg max
𝑎∈𝐴

𝑓(𝑎) returns the element of the set 𝐴 that maximizes 𝑓(𝑎).

▪ Sometimes, when the set is implicit or infinite, we can write max 𝑓(𝑎) or arg max 𝑓 𝑎 .

▪ Operators min and arg min operate in a similar manner.
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ASSIGNMENT OPERATOR

▪ The expression 𝑎 ← 𝑓(𝑥) means that the variable 𝑎 gets the new value: the result of 𝑓(𝑥).

▪ Similarly, 𝒂 ← 𝑎1, 𝑎2  means that the vector variable 𝒂 gets the two-dimensional vector 
value [𝑎1, 𝑎2].
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DERIVATIVE AND GRADIENT-1

▪ A derivative 𝑓′ of a function 𝑓 is a function or a value that describes how fast 𝑓 grows 
(or decreases). 

 If the derivative is a constant value, like 5 or −3, then the function grows (or decreases) constantly at 
any point 𝑥 of its domain. 

 If the derivative 𝑓′ is a function, then the function 𝑓 can grow at a different pace in different regions of 
its domain. 

 The derivative of zero at 𝑥 means that the function’s slope at 𝑥 is horizontal.

▪ The process of finding a derivative is called differentiation.

16



DERIVATIVE AND GRADIENT-2

▪ Derivatives for basic functions are known. For example,

  𝑓(𝑥) = 𝑥2, then 𝑓′ 𝑥 = 2𝑥

 𝑓 𝑥 = 2𝑥, then𝑓′ 𝑥 =  2

 𝑓(𝑥)  =  2, then 𝑓′(𝑥)  =  0 

 If the function we want to differentiate is not basic, we can find its derivative using the chain 
rule. 

 For instance if 𝐹(𝑥)  =  𝑓(𝑔(𝑥)), where 𝑓 and 𝑔 are some functions, then 𝐹′(𝑥)  =  𝑓′(𝑔(𝑥))𝑔′(𝑥). 

 For example if 𝐹(𝑥) = 5𝑥 + 1 2 then 𝑔(𝑥) = 5𝑥 + 1 and 𝑓 𝑔 𝑥 = 𝑔 𝑥
2

.

 By applying the chain rule, we find 𝐹′(𝑥)  =  2(5𝑥 +  1)𝑔′(𝑥) = 2(5𝑥 + 1)5 = 50𝑥 + 10.
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DERIVATIVE AND GRADIENT-3

▪ Gradient is the generalization of derivative for functions that take several inputs (or one
input in the form of a vector or some other complex structure). 

▪ A gradient of a function is a vector of partial derivatives. 

▪ You can look at finding a partial derivative of a function as the process of finding the 
derivative by focusing on one of the function’s inputs and by considering all other inputs as 
constant values.

 Let 𝑓([𝑥(1), 𝑥(2)])  =  𝑎𝑥(1) +  𝑏𝑥(2) +  𝑐, then 


𝜕𝑓

𝜕𝑥(1) = 𝑎 + 0 + 0 = 𝑎, 
𝜕𝑓

𝜕𝑥(2)= ?

▪ The gradient of function 𝑓, denoted as 𝛻𝑓 is given by the vector [
𝜕𝑓

𝜕𝑥 1 ,
𝜕𝑓

𝜕𝑥(2)]
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RANDOM VARIABLE

▪ A random variable, usually written as an italic capital letter, like 𝑋, is a variable whose 
possible values are numerical outcomes of a random phenomenon.

 Examples include a toss of a coin (0 for heads and 1 for tails), a roll of a dice, or the height of the first stranger 
you meet outside. 

▪ There are two types of random variables: 

 Discrete: takes on only a countable number of distinct values such as red, yellow, blue or 1, 2, 3, … 

 Continuous (CRV): takes an infinite number of possible values in some interval like height, weight, and time.
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DISCRETE RANDOM VARIABLES
Let a discrete random variable 𝑋 have 𝑘 possible values 𝑥𝑖 𝑖=1

𝑘 .

▪ The probability distribution of a discrete random variable is 
described by a list of probabilities associated with each of its 
possible values. 

▪ This list of probabilities is called a probability mass function (pmf). 

 For example: Pr 𝑋 = 1 = 0.1, Pr 𝑋 = 2 = 0.3, Pr 𝑋 = 3 = 0.4, Pr(
)

𝑋 =
4 = 0.2. 

 Pr 𝑋 = 𝑥𝑖  ∈ [0,1]. 

 σ𝑖=1
𝑘 Pr 𝑋 = 𝑥𝑖 = 1.

▪ The expectation of X denoted as 𝐸[𝑋] = σ𝑖=1
𝑘 (𝑥𝑖 ∙ Pr 𝑋 = 𝑥𝑖 )

 AKA mean, average or expected value, frequently denoted by 𝜇.
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CONTINUOUS RANDOM VARIABLE
▪ Because the number of values of a continuous random variable 

𝑋 is infinite, the probability Pr(𝑋 =  𝑐) for any value 𝑐 is 0. 

▪ The probability distribution of a CRV (a continuous probability 
distribution) is described by a probability density function 
(pdf). 

▪ The pdf is a function whose codomain is nonnegative and the 
area under the curve is equal to 1.

▪ 𝐸[𝑥] = ℝ׬
𝑥 ∙ 𝑓𝑥 𝑥  𝑑(𝑥), where 𝑓𝑥 is the pdf of the 

variable 𝑋 and ׬ℝ
 is the integral of function 𝑥𝑓𝑥.

In simpler terms, the expected value E[X] is calculated by 
multiplying each possible value x by its probability 
density fX(x) and then summing (integrating) over all possible 
values.

▪ ℝ׬
𝑓𝑥 𝑥  𝑑(𝑥) = 1: the area under the pdf curve is 1.
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PARAMETERS VS. HYPERPARAMETERS

▪A hyperparameter is a property of a 
learning algorithm, usually (but not 
always) having a numerical value. 

▪That value influences the way the 
algorithm works. 

▪Hyperparameters aren’t learned by the 
algorithm itself from data.

▪Parameters are variables that define 
the model learned by the learning 
algorithm. 

▪Parameters are directly modified by the 
learning algorithm based on the training 
data. 

▪The goal of learning is to find such 
values of parameters that make the 
model optimal in a certain sense.
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MODEL-BASED VS. INSTANCE-BASED LEARNING

▪Model-based learning algorithms use 
the training data to create a model that 
has parameters learned from the 
training data.

▪Most learning algorithms are model-
based e.g. linear regression, SVM, ANN, 
DTs.

▪After the model was built, the training 
data can be discarded.

Instance-based learning algorithms use 
the whole dataset as the model. 

One instance-based algorithm frequently 
used in practice is k-Nearest Neighbors 
(kNN). 

In classification, to predict a label for an 
input example the kNN algorithm looks 
at the close neighborhood of the input 
example in the space of feature vectors 
and outputs the label that it saw the 
most often in this close neighborhood.
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