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1.3 NOTATION AND DEFINITIONS | CSC 462 [THPMLE-2



\ ﬂ \ ® Variables or constants that take scalar values are denoted by an italic

” \ ’ letter, like x or a.

ﬂ \ = A vector is an ordered list of scalar values, called attributes. We
. denote a vector as a bold character, for example, x or w.

y “
’ " We denote an attribute of a vector as an italic value with an index,

\ W like this: wi) or xl). The index | denotes a specific dimension of the L

vector, the position of an attribute in the list. For instance, in the vector
a shown in red in Figure 1, o/’ = 2 and of? = 3.

\ ﬂ \ = A variable can have two or more indices, like ’rhis:xj(i) or like this xi(I;)




/ “ ’ = A set is an unordered collection of unique elements. We denote a set as a
calligraphic capital character, for example, S.

- for example, {1, 3,18,23,235} or {xl, X2y ey Xn}

“ If a setincludes all values between a and b, including a and b, it is denoted using brackets

as [a, b].

“ If the set doesn’t include the values a and b, such a set is denoted using parentheses like this:

(a, b).






- Sum of two vectors X + z is defined as the vector [x(V 4+ z(D x(2) 4 z(2) 5 (m) 4 z(m)]
- Difference of two vectors x — z is defined as the vector [xD) — z(1) x(@) — z2) ) _ z(m)]
* A vector multiplied by a scalar is a vector: xc = [Cx(l), Cx(z), e Cx(m)]

* A dot-product of two vectors is a scalar. Example, w - x = wx = Y,7%, w@®x




OPERATIONS ON SETS AND VECTORS -2

* The multiplication of a matrix W by a vector x results in another vector.

(1)
1,1 1,2 1,3 T
X:[w( ) @D )] [:{:{2)]

@) w2 WweH] [T

d_Ef T_UI:]"]']I(]') —I— wtl!ijm{g) _I_ w(l,E]I{B)
o W(E’UI(I} + w(isijm{ﬂ} + w(isgjm{g}

wlx
- e
INC
" When the vector is on the left side of the matrix in the multiplication, then it has to be
\ ﬂ \ transposed before we multiply it by the matrix.

(1)
“f x = [x(z)], then xT = [x(V, x(]
x

WD (12, (1,3)

T —
x W = [I(IJ I{Q}] w2 (22 ,(23)

L (WD (1) 4 @D 32), LD (D) 4 @D 3@ w1 zD) 4 23]



FUNCTIONS

= A function is a relation that associates each element x of a
set X, the domain of the function, to a single element y of
another set Y, the codomain of the function.

\\ " f(x) has a local minimum at x = cif f(x) = f(c) for
4 “ ’ every X in some open interval around x = c.

= The minimal value among all the local minima is called the
global minimum.

= A vector function, denoted as y = f(x)is a function that
returns a vector y. It can have a vector or a scalar argument.

VAR

y

~ local minimum

lobal minimum

0.2

0.4

0.6 0.8 1

1.2



" The operator arg max f (a) returns the element of the set A that maximizes f (a).
{a€A}







Definition of the Derivative

The derivative of a function f(z) at a point x = a is defined as:

fa) — tim Tt )~ @

h—0 h



Explanation of the Definition

1. fla+h) = f(a):
o This represents the change in the function's value when the input changes from a to a + h.
o It is often written as A f, where A denotes "change in."

2. h:

o This is the change in the input (Axz), which is approaching 0.

fla+h)—f(a) .
3, flath)—f(a),

o This is the average rate of change of f(;r:) over the interval [a, a + h].
o It is also called the difference quotient.

> The limit as h approaches 0 ensures that we are considering the instantaneous rate of

change of f(z) at the point z = a.



Geometric Interpretation

» The derivative f'(a) represents the slope of the tangent line to the graph of f(x) at the point
T = Q.
» As h gets smaller, the secant line (connecting (a, f(a)) and (a + h, f(a + h))) becomes

closer to the tangent line at x = a.



Example

Let's compute the derivative of f(z) = x? at z = a using the limit definition.

1. Write the difference quotient:

fla+h)—f(a) (a+h)*—a?

h h
2. Expand (a + h)*:

(a + h)* = a* + 2ah + h*
3. Substitute into the difference quotient:

a? + 2ah + h? — a? B 2ah + h?
h - h

4. Simplify:

2ah + h?

= 2 h
5 a +

5. Take the limitas h — 0:

f'(a) = }Lig(l)(Qa, +h) =2a

So, the derivative of f(z) = z* atz = ais f'(a) = 2a.



General Derivative

The derivative of f(x) as a function (not just at a specific point) is:

f(z+h) — f(x)
h

f'(2) = lim

This gives the slope of the tangent line to f(a:) at any point x.



Summary

« The derivative f'(a) is the instantaneous rate of change of f(x) at z = a.
o It is defined as the limit of the difference quotient as h — 0.

» Geometrically, it represents the slope of the tangent line to the curve at x = a.



IR DERIVATIVE AND GRADIENT-1

/ . . . . . .
\ 7oA derivative f' of a function f is a function or a value that describes how fast f grows

\ W (or decreases).

* If the derivative is a constant value, like 5 or —3, then the function grows (or decreases) constantly at
any point X of its domain.

“ If the derivative f' is a function, then the function f can grow at a different pace in different regions of
its domain.

* The derivative of zero at X means that the function’s slope at x is horizontal.

" The process of finding a derivative is called differentiation.



DERIVATIVE AND GRADIENT-2

\ ﬂ \ = Derivatives for basic functions are known. For example,
= f(x) = x2, then f'(x) = 2x

“ f(x) = 2x,thenf'(x) = 2

“f(x) = 2,then f'(x) = 0

* If the function we want to differentiate is not basic, we can find its derivative using the chain
rule.

* For instance if F(x) = f(g(x)), where f and g are some functions, then F'(x) = f'(g(x))g’(x).
* For example if F(x) = (5x + 1)? then g(x) = 5x + 1 and f(g(x)) = (g(x))z
* By applying the chain rule, we find F'(x) = 2(5x + 1)g'(x) = 2(5x + 1)5 = 50x + 10.



\ ﬂ W " Gradient is the generalization of derivative for functions that take several inputs (or one
” \ / input in the form of a vector or some other complex structure).

/ “ ’ " You can look at finding a partial derivative of a function as the process of finding the
derivative by focusing on one of the function’s inputs and by considering all other inputs as
constant values.

r P et F([xD,x@]) = ax® + bx® + ¢, then
_of _ _ o af
l\ —m-at0+0=a,—5=7

/ \ # = The gradient of function f, denoted as Vf is given by the vector |

of  of
ax( ! ax(2>]



/ possible values are numerical outcomes of a random phenomenon.

* Examples include a toss of a coin (O for heads and 1 for tails), a roll of a dice, or the height of the first stranger
you meet outside.



\ ﬂ \ " The probability distribution of a discrete random variable is
described by a list of probabilities associated with each of its 06
possible values.

0.5-
\ ﬂ \ = This list of probabilities is called a probability mass function (pmf).
* For example: Pr(X =1) = 0.1,Pr(X =2) = 0.3,Pr(X =3) = 0.4,Pr(X = 0
4) =02 T 03]
S 0.

- Pr(X = x;) € [0,1].
k 0.21
1 Pr(X =x;) = 1.

= The expectation of X denoted as E[X] = é;l(xi - Pr(X = x;)) 1

- AKA mean, average or expected value, frequently denoted by u. 0.0-

20



CONTINUOUS RANDOM VARIABLE

y \ , = Because the number of values of a continuous random variable
X is infinite, the probability Pr(X = c¢) for any value c is O.

\ ﬂ \ * The probability distribution of a CRV (a continuous probability 00
distribution) is described by a probability density function

area under the curve is equal to 1.

4
“ 4 = E[x] = fR x - fx(x) d(x), where fx is the pdf of the 02

variable X and |. is the integral of function xf x.

In simpler terms, the expected value E[X] is calculated by
multiplying each possible value x by its probability 00
density fX(x) and then summing (integrating) over all possible
values.

- fR fx(x) d(x) = 1: the area under the pdf curve is 1.

(pdf). .
\ ﬂ \ * The pdf is a function whose codomain is nonnegative and the 04

R 0.1

21




PARAMETERS VS. HYPERPARAMETERS

A hyperparameter is a property of a

learning algorithm, wusually (but not
always) having a numerical value.
That value influences the way the

algorithm works.

Hyperparameters aren’t learned by the
algorithm itself from data.

Parameters are variables that define
the model learned by the learning
algorithm.

Parameters are directly modified by the
learning algorithm based on the training
data.

The goal of learning is to find such
values of parameters that make the
model optimal in a certain sense.

23



MODEL-BASED VS. INSTANCE-BASED LEARNING

Model-based learning algorithms use
the training data to create a model that
has parameters learned from the
training data.

Most learning algorithms are model-
based e.g. linear regression, SVM, ANN,
DTs.

After the model was built, the training
data can be discarded.

Instance-based learning algorithms use
the whole dataset as the model.

One instance-based algorithm frequently
used in practice is k-Nearest Neighbors
(kNN).

In classification, to predict a label for an
input example the kNN algorithm looks
at the close neighborhood of the input
example in the space of feature vectors
and outputs the label that it saw the
most often in this close neighborhood.

24
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