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Abstract 17 

Lead (Pb), like other heavy metals, is not essentially required for optimal plant growth; 18 

however, plants uptake it from the soil, which poses an adverse effect on growth and yield. 19 

Asparagine (Asp) and thiourea (Thi) are known to assuage the negative impacts of heavy 20 

metal pollution on plant growth; however, combined application of Asp and Thi has rarely 21 

been tested to discern if it could improve wheat yield under Pb stress. Thus, this 22 

experimentation tested the role of individual and combined applications of Asp (40 mM) and 23 

Thi (400 mg/L) in improving wheat growth under lead (Pb as PbCl2, 0.1 mM) stress. Lead 24 

stress significantly reduced plant growth, chlorophyll contents and photosystem system II 25 
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(PSII) efficiency, whereas it increased Pb accumulation in the leaves and roots, leaf proline 26 

contents, phytochelatins, and oxidative stress related attributes. The sole or combined 27 

application of Asp and Thi increased the vital antioxidant biomolecules/enzymes, including 28 

reduced glutathione (GSH), ascorbic acid (AsA), ascorbate peroxsidase (APX), catalase 29 

(CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), dehydroascorbate 30 

reductase (DHAR), and glutathione reductase (GR). Furthermore, the sole or the combined 31 

application of Asp and Thi modulated nitrogen metabolism by stimulating the activities of 32 

nitrate and nitrite reductase, glutamate synthase (GOGAT) and glutamine synthetase (GS). 33 

Asp and Thi together led to improve plant growth and vital physiological processes, but 34 

lowered down Pb accumulation compared to those by their sole application. The results 35 

suggest that Asp and Thi synergistically can improve wheat growth under Pb-toxicity.  36 

Keywords: Asparagine; Inorganic nutrients; Lead toxicity; osmolytes; phytochelates; 37 

oxidative stress; wheat 38 

Introduction 39 

Wheat is one of the most significant cereal crops utilized as a major staple food for the rapidly 40 

expanding global population.  Each year, millions of tonnes of wheat are harvested worldwide 41 

(Grote et al., 2021). However, overall wheat yield is low because of several environmental 42 

pressures including heavy metals. (Khan et al. 2006; Rady et al., 2016).  43 

Lad (Pb) is not essentially needed for optimum growth and metabolism of plants; 44 

however, a minor rise in its concentration in the growth medium can cause significant 45 

damages to several biological events (Sofy et al., 2020), including reduced photosynthetic 46 

activity (Fatemi et al., 2020), and leaf water content (Arena et al., 2017). Moreover, Pb-47 

stressed plants can markedly generate reactive oxygen species (ROS) (Huihui et al., 2020). 48 

The ROS so generated can effectively injure vital membrane molecules, thereby damaging 49 

biological membrane integrity (Khan et al., 2020). However, a sophisticated defense system is 50 
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adopted by plants to cope with the adverse effects of stressful environments, including those 51 

of Pb-toxicity (Zhang et al., 2019). Modulation of AsA-GSH cycle enzymes is one of the lines 52 

of action employed by crops to enable them to thrive under stressful environments (Kaya, 53 

2020). Contrarily, this defense system is not fully able to modulate key functions involved in 54 

growth and development in plant species highly susceptible to Pb-toxicity (Ansab et al., 55 

2018).  56 

The growth, productivity, and quality traits of most of plant species are mediated by 57 

nitrogen (N) metabolism (Zhong et al., 2017; Ashraf et al., 2018). Nitrate (NO3
-) is the 58 

prevalent form of N taken up plants (Shaikh and Ali, 2021). Nitrate reductase (NR) enzyme 59 

reduces NO3
- to nitrite (NO2), which is then reduced to NH4

+ by the action of nitrite reductase 60 

(NiR) (Tejada-Jimenez et al., 2019). During the growth and development of plants, the 61 

enzymes glutamine synthetase (GS) and glutamate synthetase (GOGAT) are essential for the 62 

absorption and reassimilation of ammonia produced from a number of metabolic activities 63 

(Yao et al., 2019). Therefore, it is necessary for the metal stressed plants to get upregulated 64 

the activities of enzymes involved in N-metabolism required for optimum growth (Ashraf et 65 

al., 2018). Numerous reports have shown that Pb stress disrupts N-metabolism in plants (Nas 66 

and Ali, 2018; Zanganeh et al., 2018). Hence, an efficient approach is indispensable to 67 

diminish the destructive impacts of Pb stress on metabolic processes of plants. 68 

It is well evident that synthetic and natural plant growth regulators can competently 69 

control the metabolic events involved in plant growth under both stressful and benign 70 

environments (Small and Degenhardt, 2018; Maxiselly et al., 2021). Asparagine (Asp) is one 71 

of these intrinsic regulators capable of controlling a range of metabolic events involved in 72 

growth (Le Moigne et al., 2018; Han et al., 2021). Asparagine is known to upsurge tolerance 73 

to stress in plants (Parida et al., 2018; Ganie, 2021). Various plant species including maize 74 
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(Zanganeh et al., 2019) and wheat (Oddy et al., 2020) are known to accumulate Asp in high 75 

amount under stressful environments. 76 

Thiourea (Thi) is another bio-regulator which plays a marked role in various 77 

biochemical and physiological events in plants under stressful environments including metal 78 

toxicity (Patade et al., 2020; Mansoora et al., 2021).  Thiourea has a critical function in the 79 

modulation of redox status, hormonal regulation and calcium signaling, and can decrease the 80 

oxidative stress induced growth impairment by increasing the activities of antioxidant 81 

enzymes involved in ROS scavenging (Waqas et al., 2019; Patade et al., 2020; Yadav et al., 82 

2021; Singh et al., 2022). The effects of Asp and Thi on plants subjected to the toxicity of a 83 

variety of   metals, including Pb, had been studied separately, but the role of the combined 84 

application of Asp and Thi in counteracting the injurious influence of high regimes of Pb on 85 

plants is not reported in the literature. Thus, it was hypothesized that Pb toxicity would 86 

significantly reduce the growth and alter biochemical mechanisms, whereas the combined 87 

application of Asp and Thi would reverse these adverse impacts. It was further hypothesized 88 

that the combined application of Asp and Thi would result in improved Pb stress tolerance of 89 

wheat plants compared to their individual applications. Therefore, the key objective of this 90 

research was to examine if the combined supplementation of Asp and Thi could effectively 91 

alleviate the adverse impacts of Pb on the wheat plants’ growth and key physiological 92 

processes. 93 

 94 

Materials and Methods 95 

Experimental set-up  96 

The current research was performed in a greenhouse maintained at 20±5 ºC and 10±2 ºC day 97 

and night temperatures, 65-70% relative humidity and a 11/13 h light/dark period. Seeds of 98 

bread wheat (Triticum aestivum L.)  cultivar ‘Pandas’ were decontaminated with 1% NaOCl 99 
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solution and sown in 5-L plastic pots containing perlite. Fifty seeds were planted in a separate 100 

pot, and after germination the seedlings were uprooted to 35. The Hoagland’s nutrient 101 

solution (HNS; half strength) was provided to the plants (0.1-1.0 L depending upon the plant 102 

size) on alternate days throughout the study. The detailed composition of the HNS is 103 

mentioned in Steinberg et al. (2000). The pH of the HNS was adjusted at 5.5. The trial was 104 

arranged in a completely randomized design with 3 replicates; each replicate consisted of 3 105 

pots, so there was a total of 9 pots in each treatment.  106 

Before initiating the proper treatments, the germinated seedlings were acclimatized for 10 d. 107 

The plants were laid open to Pb-stress (100 µM Pb) using lead chloride (PbCl2) or no-stress 108 

(control).  The selected concentration was chosen based on our previous work (Kaya, 2020). 109 

Lead was supplied through nutrient solution. The treatment solutions of Asp (40 mM) and Thi 110 

(400 mg/L) prepared in Tween-20 (0.01%) were sprayed to seedlings on alternate days for 14 111 

days, and then the data for different traits were recorded. The control plants in each pot were 112 

foliar-sprayed with 20 mL deionized water. The control pots were placed at a distant place 113 

within the greenhouse to avoid spray drift. The source of asparagine is L-asparagine 114 

monohydrate (Merck), and thiourea is used as thiourea (Merck). Both chemicals were 115 

dissolved in slightly hot water. The concentrations of Asp and Thi chosen were based on our 116 

previous works (Kaya et al., 2013; Kaya et al., 2019). The source of asparagine was L-117 

asparagine monohydrate (Merck), and thiourea as thiourea (Merck). Both chemicals were 118 

dissolved in slightly hot water. The lead level used in the study was chosen based on our 119 

previous work (Kaya, 2020). 120 

After 14 days of imposition of various treatments, the plants were gently removed 121 

from the pots to avoid a damage to the roots. The roots and shoots were weighed fresh, and 122 

then completely dried in an oven at 75 ◦C. The shoot and root dry weights   were then 123 

recorded. 124 
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Quantification of Pb content, translocation factor (TF), bio-concentration factor (BCF), 125 

and biological accumulation coefficient (BAC) 126 

Dried root and shoot samples were digested in HClO4:HNO3 solution (1:5, v/v) to quantify 127 

tissue Pb content. The digested samples were read on an ICP-OES. The protocols listed in 128 

Malik et al. (2010) were followed to compute BCF, TF and BAC. The BCF denotes the ration 129 

of root Pb growth medium Pb concentration. The TF is the ratio of shoot Pb to root Pb. The 130 

BAC indicates the ratio of shoot Pb concentration to growth medium Pb concentration. 131 

 132 

Maximal photosystem II quantum yield and key photosynthetic pigments 133 

The procedures described in Arnon (1949) were followed to determine chlorophyll and 134 

carotenoid contents. Leaf tissue was homogenized in acetone (5 ml, 80%), and the final 135 

volume of each extract was completed to 50 ml with acetone. The optical density was read at 136 

480, 645 and 663 nm for carotenoids, chlorophyll a and chlorophyll b, respectively. 137 

A portable fluorescence meter (Walz, Germany) was used to determine maximal 138 

quantum yield (Fv/Fm) from the leaves previously placed in dark conditions for 30 minutes.   139 

 140 

Estimation of RWC, glycine betaine, proline, and soluble sugars 141 

Leaf RWC was appraised employing the procedure illustrated by Barrs and Weatherly (1962). 142 

The leaves were separated from the plants and their fresh mass (FM) recorded. The leaf 143 

materials were dipped for 3 h in water to record turgid mass (TM). For recording dry mass 144 

(DM), the leaves were placed in an oven at 80 oC for 12 h. The RWC was computed using 145 

Equation 1:  146 

RWC (%) = [(FM – DM)/ (TM – DM)] × 100.     -------Eq. 1 147 

Free proline was measured pursuing the protocol illustrated in Bates et al. (1973). An 148 

aliquot of 3% sulfosalicylic acid (10 ml) was added to 0.5 g fresh leaf, and centrifuged for 10 149 
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min at 3000 RCF. Afterwards, the filtrate (2 ml) was treated sequentially with glacial acetic 150 

acid and acid ninhydrin solutions. The resulting mixture was kept at 100 °C for 1 h and then 151 

cooled; and toluene (4 ml) was added for separating free proline. The OD was noted at 520 152 

nm. 153 

Glycine betaine (GB) was measured following the protocol outlined in Grieve and 154 

Grattan (1983). The anthrone reagent was used to estimate total soluble sugars. The samples 155 

(0.1 g) were extracted using 80% ethanol solution. The mixture was centrifuged for 10 156 

minutes at 5000 RCF. To 0.5 ml supernatant, 1 ml HCl (1N) was added. The resulting filtrate 157 

was subjected to 100 °C maintained in a water bath and then 4.0 ml of 0.2% anthrone were 158 

added to it. The ODs of all treated samples were registered at 620 nm. 159 

 160 

Quantification of phytochelatins 161 

Phytochelatin (PC) content was computed by deducting glutathione (GSH) contet from that of 162 

total non-protein thiols (NPT). Sulfosalicylic acid (3%) was used for macerating fresh leaf 163 

tissue. The Ellman's reaction solution consisted of 5 mM EDTA and 0.6 mM DTNB [5,5 o-164 

ithiobis (2-nitrobenzoic acid)]. The NPT was quantified at 412 nm following Ellman (1959).  165 

 166 

Determination of ascorbic acid and glutathione 167 

 Meta-phosphoric acid buffer (3 mL, 5%) and 1 mM EDTA were used to homogenize 500 mg 168 

fresh leaf. The homogenized mixture was subjected to a centrifuge at 11,500 RCF at 4 °C for 169 

12 min. The resulting reaction mixture was used to quantify glutathione and ascorbate. 170 

Potassium-phosphate buffer (pH 7.0; 500 mM) was used to quantify ascorbate 171 

following Huang et al. (2005). The assay of reduced ascorbate was conducted in ascorbate 172 

oxidase (0.5 units) and potassium-phosphate buffer (pH 7.0; 0.1 M). The treated samples were 173 

read at 265 nm.  174 
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The samples were extracted with 30 mM dithiothreitol to estimate total AsA. 175 

Dehydroascorbate (DHA) was computed by deducting reduced-AsA content from total AsA.  176 

The study of Yu et al. (2003) was pursued for assaying reduced GSH and glutathione 177 

disulfide (GSSG). A K-phosphate buffer (0.6 ml, 0.5 M, pH 7.0) was added to 0.4 ml of the 178 

sample extract. The GSH was measured by the changes in OD values at 412 nm for NTB (2-179 

nitro-5-thiobenzoic acid) generated by the DTNB reduction. The GSSG level was computed 180 

by subtracting the GSH concentration from that of the derivatizing agent, 2-vinylpyridine. 181 

Quantification of oxidative stress related traits 182 

Leaf hydrogen peroxide (H2O2) was measured following Loreto and Velikova (2001). 183 

Briefly, fresh leaf sample (0.5 g) was extracted in 1% trichloroacetic acid (3 mL). Afterwards, 184 

0.75 ml of the resulting extract was reacted sequentially with 1.0 M KI (1.5 mL) and 10 mM 185 

K buffer (0.75 mL). The absorbance was measured at 410 nm. 186 

Leaf MDA was estimated exercising the protocol of Weisany et al. (2012). The leaf 187 

samples (each 0.2 g) were extracted in trichloroacetic acid (TCA; 5 mL, 0.1% w/v). The 188 

resulting homogenate was subjected for 5 min to a centrifuge adjusted at RCF value of 12,000 189 

at 4 °C. Afterwards, TCA (20%) and 4 ml of 0.5% thiobarbituric acid were added to the 190 

homogenate. The optical densities of the treated samples were noted at 532 nm and 600 nm. 191 

The protocol illustrated in Dionisio-Sese and Tobita (1998) was followed for 192 

estimating electrolyte leakage (EL). Leaf discs were excised from pre-cleaned leaves. All 193 

vials, each containing leaf discs and deionized water (10 mL) vigorously shaken to determine 194 

the first electrical conductance (EC1). The resulting materials were incubated at 120 ◦C for 20 195 

min to record the second electrical conductance (EC2). Equation 2 was employed to compute 196 

EL. 197 

EL (%) = (EC1/EC2) × 100 --------------- Eq. 2 198 

 199 
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Quantification of enzymatic activities  200 

A 500 mg of fresh leaf was macerated in ice-cold K-phosphate buffer (1 ml of 100 mL, pH 201 

7.0) including 1% polyvinylpyrrolidone and then was centrifuged at RCF of 12,000 at 4 ºC for 202 

15 min. The enzyme activities were measured from the extracted mixture. 203 

Van Rossum et al. (1997) were followed to measure SOD activity, and Chance and 204 

Maehly (1955) were followed to measure CAT activity. Similarly, Hossain et al. (2010) were 205 

followed to appraise the activity of glutathione reductase. The reaction solution consisted of 206 

NADPH (0.2 mM), K-phosphate buffer (0.1 M, pH 7.8), EDTA (1.0 mM), GSSG (1.0 mM) 207 

and the enzyme extract in a final volume of 1.0 ml. The reaction was started by adding GSSG 208 

to the sample mixture to initiate the reaction. The reduction in optical density due to NADPH 209 

oxidation was noted for one min at 340 nm.  210 

The activity of monodehydroascorbate reductase was measured according to Hossain 211 

et al. (1984). The extract was treated with the chemicals detailed in Hossain et al. (1984) and 212 

OD of all treated was read at 340 nm for one min. 213 

The activity of dehydroascorbate reductase was quantified employing the procedure of 214 

Nakano and Asada (1981). The samples were treated with all reagents described in the 215 

procedure, and their OD was noted at 265 nm for 1 min. 216 

The glutathione-S-transferase activity was recorded following Hossain et al. (2006). 217 

The reaction mixture comprised Tris–HCl buffer (pH 6.5; 100 mM), GSH (1.5 mM), 1-218 

chloro-2,4-dinitrobenzene (CDNB; 1 mM), and the enzyme extract in a 0.7 ml final volume. 219 

The absorbance changes were noted at 340 nm for 1 min.  The glutathione-S-transferase 220 

activity was computed using an extinction coefficient of 9.6 mM-1 cm-1. 221 

Axelrod et al. (1981) were followed to record the activity of lipoxygenase (EC: 222 

1.12.11.12).  223 

 224 
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Measurement of total free amino acids and total soluble proteins 225 

The total amino acids were appraised following the ninhydrin method devised by Rosen 226 

(1957). Glycine (μg) present in one g of fresh material was regarded as total free amino acids. 227 

Total soluble proteins in the leaves were estimated according to Bradford (1976). 228 

 229 

Estimation of N metabolism key enzymes’ activities 230 

A proportion of fresh leaves (1:5, w/v) was extracted in 0.1 M K-phosphate buffer (pH 7.5) 231 

comprising 2 mM EDTA, 0.5% PVP and 5 mM cysteine in a cold pestle-mortar for estimating 232 

the activities of nitrate reductase (NR) and nitrite reductase (NiR). The mixture was 233 

centrifuged and used to estimate the activities of NR and NiR.  234 

The activity of NR was recorded following Debouba et al. (2006). An aliquot of 1.4 ml 235 

sample mixture containing 0.1 M potassium phosphate buffer (pH 7.5) comprised 7 mM 236 

KNO3, 140 µM NADH, 10 mM MgCl2. To commence the reaction, NADH was added to the 237 

sample homogenate and it was kept at 27 °C for 30 min, and then   an aliquot of 100 µl of 238 

500 mM zinc acetate was added to it, and centrifuged for 10 min at RCF 3000. Nitrite 239 

formation was measured as the formation of diazotation with 0.01% naphthylenediamine 240 

dihydrochloride (NEA) and 1% sulfanilamide (SA). The homogenate was cooled and the ODs 241 

were noted at 540 nm. The amount of nitrite produced was estimated with a standard curve 242 

prepared with a range of NaNO2 solutions 243 

The NiR activity was measured as NO2
− decrease in the reaction mixture following 244 

Debouba et al. (2006).  245 
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 246 

Estimation of the activities of glutamine synthetase (GS), glutamate dehydrogenase 247 

(GDH) and glutamate synthase (GOGAT) 248 

Leaf material (1:5, w/v) was extracted in 50 mM Tris–HCl buffer (pH 7.6) consisting of 249 

1 mM EDTA, 1 mM MgCl2, 10 mM β-mercaptoethanol, 1 mM dithiothreitol and 0.5% PVP 250 

to determine the activities of GS and GDH. Afterwards, the extract was centrifuged at RCF 251 

20,000 for 20 min, and the activities of GS and NADH-GDH were quantified. Agbaria et al. 252 

(1998) were followed to quantify the GS.   253 

The activity of GDH was recorded at 340 nm at 30 °C by noticing the oxidation of 254 

ADH according to Groat and Vance (1981). An aliquot (2 mL) of the sample solution 255 

consisting of 100 mM Tris–HCl buffer (pH 8.0), 11 mM 2-oxoglutaric acid, 200 µM NADH 256 

and 100 mM NH4Cl was used to determine the activity of NADH-GDH. 257 

Estimation of total nitrogen, nitrate and ammonium  258 

The leaf samples were dried under 70 °C for 72 h and the Kjeldahl method (Muñoz-Huerta et 259 

al. 2013) was used to measure the total nitrogen. Nitrate was quantified as illustrated in 260 

Cataldo et al. (1975).   261 

Ammonium was measured by the Nessler reagent as detailed in Molins-Legua et al. 262 

(2006). The reaction mixture comprised 100 µl of the filtrate, 10 µl of 10% K–Na tartrate, 263 

2.4 ml of redistilled water, and100 µl of the Nessler reagent. The OD values were recorded at 264 

425 nm.  265 

 266 

Statistical analysis  267 

The data collected for each attribute were tested for normality on the SAS version 9.1 (SAS 268 

Institute Inc. NC, USA). Analysis of variance (ANOVA) was worked out to appraise the 269 

variance in the data sets. The data were presented as means and standard errors. The Duncan’s 270 
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Multiple Range test (at 5% confidence level) was employed to decipher the differences among 271 

the mean values where the ANOVA denoted significant differences. 272 

 273 

Results  274 

Phenotypic appearance of plants 275 

 The leaf size and height of the Pb-stressed plants significantly reduced as well as chlorosis 276 

symptoms appeared on their all leaves (Fig. 1). No chlorosis and deformities were noticed in 277 

the leaves of plants treated individually with Asp or combined application of Asp and Thi.  278 

Lead (Pb) stress significantly increased canopy temperature of the wheat plants compared to 279 

that by the control treatment. The canopy temperature increased from 23.4 ºC to 28.1 ºC in the 280 

Pb-stressed plants. The sole application of Thi decreased canopy temperature in the Pb-281 

stressed plants to a substantial extent, whereas the combined application of Asp and Thi 282 

decreased the canopy temperature close to that of the control treatment (Fig. 1). 283 

 284 

Plant growth, photosynthetic pigments, and Pb translocation and accumulation 285 

Lead stress considerably decreased shoot and root biomass compared to that by the controls 286 

(Fig. 2A-B). The sole or the application of Asp and Thi together improved dry biomass 287 

production under Pb-stress. Shoot and root biomass were found to be reduced by 26% and 288 

42%, respectively, under Pb-stress with respect to that under the normal treatment. The 289 

supplementation of Asp and Thi together improved shoot and root biomass by 37% and 78%, 290 

respectively, under Pb-stress. These results exhibit that the combined application of Asp and 291 

Thi played a critical function in alleviating the detrimental impacts of Pb-stress on biomass of 292 

the wheat plants.  293 

Lead  toxicity reduced the levels of photosynthetic pigments such as chlorophyll a, 294 

chlorophyll b, and carotenoids as well as the PS II quantum efficiency (Fv/Fm) by 48%, 58%, 295 
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59% and 36%, respectively (Fig. 2C-F). Exogenous application of Asp or Thi significantly 296 

increased these attributes with the highest values recorded due to their combined application. 297 

The combined application of Asp + Thi improved Chl a, Chl b, carotenoids and efficiency of 298 

PS II (Fv/Fm) by 70%, 112%, 128%, and 51%, respectively, under Pb-toxicity. 299 

High Pb dose in the root zone caused Pb content in the shoots and roots of the wheat 300 

plants (Fig. 3A, B). Approximately, 1.6-fold higher Pb was found to be accumulated in the 301 

roots over that in the shoots. Foliar applied Asp or Thi reduced Pb accumulation by 5% and 302 

24% in the roots, and 27% and 36% in the shoots, respectively, under Pb stress. Moreover, the 303 

Asp and Thi together decreased the root and shoot Pb contents by 44% and 53%, respectively, 304 

under Pb toxicity.  305 

Lead toxicity increased BCF, TF and BAC (Fig. 3C-E), whereas they were found to be 306 

decreased with the application of Asp or Thi. The Asp and Thi together reduced the BCF, TF 307 

and BAC by 44%, 15% and 53%, respectively, under Pb-stress.  308 

 309 

Modulation of RWC, soluble sugars, glycine betaine (GB) and proline (Pro) under Pb 310 

stress 311 

Lead stress decreased RWC by 27%; however, Asp, Thi and Asp+Thi application improved it 312 

by 20%, 21%, and 30%, respectively (Fig. 3F). 313 

Lead stress increased Pro and GB contents by 93% and 194%, respectively, whereas it 314 

lowered soluble sugar content by 52% (Fig 3G-I). The sole or the combined application of 315 

Asp and Thi led to lower accumulation of Pro, GB, and sugars under Pb-toxicity over the 316 

control treatment. The Asp and Thi together increased Pro, GB and soluble sugars by 86%, 317 

34%, and 76%, respectively.  318 

 319 

Enhancement in phytochelatin synthesis, GSH and AsA contents   320 
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Lead stress increased PC accumulation and GST activity by 5.6- and 2.1-fold, respectively 321 

(Fig 4A, B). Moreover, Pb stress raised the GSH and GSSG contents by 29% and 75%, 322 

respectively, whereas it decreased the GSH/GSSG rate over that in the control treatment (Fig. 323 

4C-E). Application of Asp or Thi led to a higher rise in GSH and GSSG under Pb-stress. The 324 

effect of the Asp and Thi together was more evident than that of their individual application. 325 

The Asp and Thi supplementation increased PC and GSH activity, possibly by the 326 

detoxification of Pb. 327 

 Lead toxicity decreased AsA content by 24%, but increased DHA by 31% compared 328 

to that in the normally treated plants (Fig. 5A, B). The AsA/DHA ratio decreased by 42% 329 

under the Pb-stress with reference to that in the normally treated plants (Fig. 5C). The 330 

combined application of Asp and Thi to the Pb-stressed plants further increased AsA and 331 

AsA/DHA ratio. The sole or the combined supplementation of Asp and Thi did not affect 332 

these traits in plants subjected to Pb-free environment. 333 

 334 

Lead-induced oxidative stress 335 

Lead toxicity significantly increased H2O2 (205%), MDA (330%), EL (247%) and LOX 336 

activity (122%) over those in the controls (Fig. 5D-G). It was observed that these attributes 337 

were reduced due to Asp or Thi treatment. Externally applied Asp + Thi caused 44%, 50%, 338 

53% and 41% reduction in H2O2, MDA, EL, and LOX activity, respectively.  339 

 340 

Regulation of the antioxidant system  341 

The activities of antioxidant enzymes are shown in Fig. 6A-F. Lead toxicity augmented the 342 

activities of SOD (41%), APX (29%) and GR (139%), but it declined CAT (32%), MDHAR 343 

(40%) and DHAR (37%) over those in normally treated plants. Foliar supplemented Asp or 344 

Thi increased the above-mentioned enzyme activities, whereas the combined application of 345 
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Asp + Thi further increased the activities of these enzymes. The Asp or Thi application under 346 

Pb-free environment markedly increased the CAT, SOD and APX activities, but the change in 347 

the GR, MDHAR and DHAR activities was not significant. 348 

 349 

Improvement in nitrogen metabolism under Pb stress 350 

 Pb toxicity significantly decreased the activities of nitrate reductase (NR), nitrite reductase 351 

(NiR), glutamine synthetase (GS) and glutamate synthetase (GOGAT). The activities of these 352 

enzymes decreased by 44%, 43%, 43% and 49%, respectively, under Pb stress. Glutamate 353 

dehydrogenase (GDH), another enzyme related to nitrogen metabolism, increased by 107% 354 

under Pb stress (Fig. 6G-K). Foliar application of Asp or Thi alone increased the NiR, NR, 355 

GOGAT and GS activities, but decreased that of GDH. The combined application of Asp and 356 

Thi improved the activities of NR, NiR, GS and GOGAT by 56%, 53%, 59%, and 97%, 357 

respectively, under Pb toxic regime. 358 

Compared to the control treatment, Pb stress declined total nitrogen (N) by 45% and 359 

nitrate (NO3
-) by 34%, and it enhanced NH4

+ by 66% (Fig. 7A-C). The wheat plants treated 360 

with Asp or Thi showed an increase in total N and NO3
-, and a reduction in NH4

+ under Pb 361 

toxicity. Foliar application of Asp and Thi jointly to the Pb-stressed plants increased total N 362 

by 69% and NO3
- by 106%, but it decreased NH4

+ by 58%. A maximal augmentation in N and 363 

NO3
- levels and a drop in NH4

+ were obtained with Asp + Thi treatment under Pb stress. 364 

Over the control treatment, Pb toxicity upraised the total amino acid level (53%) and 365 

decreased total soluble protein level (44%) in plant leaves (Fig 7D, E). Foliar supplementation 366 

of Asp or Thi to the Pb-stressed plants decreased total amino acids and upraised total soluble 367 

proteins. Compared to the Pb stressed plants, total amino acids decreased by 40% and total 368 

proteins by 109% in wheat plants treated with Asp + Thi and Pb stress.  369 

 370 
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Discussion 371 

 372 

Reduced shoot and root Pb contents  373 

Lead is readily absorbed by plants growing on Pb-rich soils and accumulated mostly in the 374 

roots and to a lesser level in the leaves, stems and seeds (Sharma and Dubey, 2005). The cell 375 

membrane and cell wall are the main structures that prevent Pb from contacting the cell 376 

(Parrotta et al., 2015). Lead influx to the cells is decreased through phytochelatins (Mishra et 377 

al., 2006). However, Pb- toxicity led to higher Pb accumulation in plant tissues in the current 378 

study, particularly in the roots, which significantly reduced root growth; such reductions have 379 

been reported earlier for wheat plants (Kanwal et al., 2020). A variety of methods are being 380 

used to mitigate the metal-induced damage to plant growth by preventing metal uptake (Rai et 381 

al., 2019). For instance, exogenous application of various endogenously produced substances 382 

by plants has been used to alleviate the damaging effects of metals (Bücker-Neto., 2017). The 383 

current study investigated the role of sole or joint supplementation of Asp and Thi in 384 

assuaging the harmful effects of Pb-toxicity on wheat plants. Both Asp and Thi significantly 385 

reduced Pb accumulation in the roots of wheat plants. Furthermore, Asp and Thi reduced the 386 

transport of Pb from the roots to above-ground parts. The combined application of Asp and 387 

Thi was more effectual in inhibiting Pb uptake from the roots and its transport to the above-388 

ground plant parts. No report could be deciphered from the literature sources on the inhibitory 389 

impact of Asp on Pb-stressed plants. Furthermore, decreased root and shoot Pb contents due 390 

to Thi application under Pb-toxicity have been reported in Trigonella foenum graecum L. 391 

(Xalxo and Keshavkant, 2019). Decreased Pb transport in the plant tissues might have been 392 

due to formation of a Pb-Thi complex as reported by Patrick (2006), but such occurrence 393 

needs a conclusive evidence through future research. In addition, it has been proposed that 394 

Thi can protect plants against membrane damage by normally maintaining metabolic 395 
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processes, because a small proportion of Pb absorbed by plants is delivered to the shoot cells 396 

(Xalxo and Keshavkant, 2019).  397 

 398 

 399 

Water relations and osmolytes in wheat plants under Pb toxicity  400 

The treatment of Asp and Thi increased the concentrations of osmotic compounds which may 401 

enhance tolerance of plants to stress by improving cellular water status (Lea et al., 2006; 402 

Ahmad et al., 2021). Proline and GB play a critical role in stress reduction in plants via 403 

osmotic adaption (Abbaspour and Ehsanpour, 2020). Moreover, Pb toxicity increases the 404 

synthesis of proline (Yang et al., 2011), and GB (Zanganeh et al., 2018) in plants. The supply 405 

of Asp and Thi augmented the GB and proline contents in the current study, clearly indicating 406 

that both compounds played a significant role in increasing Pb tolerance. Previous studies 407 

have also reported that Asp increased proline and GB contents in Camelina spp. (Ahmad et 408 

al., 2021), whereas Thi increased proline in maize (Kaya et al., 2013). Moreover, our data 409 

show that Asp and Thi-induced enhanced proline content could have been due to modulation 410 

of proline metabolism as shown by Sofy et al. (2020) under Pb-stress. The wheat plants 411 

exposed to Asp or Thi showed a rise in proline, GB and RCW, possibly through improved 412 

hydraulic conductivity, as reported by Naz et al. (2021). Furthermore, Pb toxicity is 413 

considered to be involved in restricting water uptake (Nas et al., 2018) mediated by 414 

diminished root hydraulic conductivity, which can reduce cellular turgor thereby resulting in 415 

decreased RWC. 416 

 417 

Improvement of Pb detoxification and antioxidant metabolism in wheat plants  418 

Different metabolites including phytochelatins (PCs), glutathione (GSH) and GST are 419 

believed to play a significant role in Pb detoxification in plants (Gupta et al., 2010). Lead may 420 
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bind to GSH through thiol (-SH) group (Vadas and Ahner, 2009), which sequesters it as a 421 

precursor of PCs in the vacuole (Malecka et al., 2008). Likewise, PCs are effective chelating 422 

substances for binding to Pb (Gul et al., 2021). Lead stress has been stated to promote 423 

generation and activation of PCs (Pourrut et al., 2011). This suggests that GSH and PCs 424 

jointly detoxify Pb. The wheat plants treated with Pb displayed increased GSH, which was 425 

subsequently transformed into GSSG. This might have been one of the causes of higher 426 

GSSG in the Pb-stressed wheat plants compared to those in the control. High GSSG and 427 

reduced ratio of GSH:GSSG signalize Pb-induced oxidative impairment (Sytar et al., 2013). 428 

The treatment of Asp and Thi reversed GSH:GSSG rate and GSH concentration by increasing 429 

the GSH level and GSH/GSSG ratio in the current study. Our findings are parallel to those of 430 

Srivastava et al. (2014) wherein Thi increased rice GSH and GSH:GSSG ratio under heavy 431 

metal stress. Lead stress increased PC synthesis in the wheat plants in the present 432 

experimentation, and the plants treated with Asp and Thi had higher PC contents under Pb-433 

stress. This clearly indicates that the sole or combined application of Asp and Thi played a 434 

significant role in PC biosynthesis that gave rise to a significant chelation of Pb. Patade et al. 435 

(2020) also stated that treatment of Thi enhances chelation of heavy metals in plants. The 436 

application of Asp plus Thi was more efficient in promoting PC bio-synthesis. There is no 437 

study as yet in the literature reporting the impact of treatment of Asp plus Thi on PC synthesis 438 

in plants under Pb toxicity. It has been reported that Asp can bind to lead and make it 439 

ineffective for being toxic for plants (Pavlik et al., 2010). Since GSH is a precursor of PC 440 

biosynthesis in plants, it is probable that Asp and Thi had a role in the biosynthesis of PC by 441 

increasing GSH production, which resulted in higher GSH and PC. 442 

Application of Asp or Thi significantly reduced oxidative stress in the wheat plants 443 

exposed to Pb toxicity. High H2O2 accumulation in stressed plants causes a further damage to 444 

proteins and lipids, impacting their ultrastructure and efficacy (Sharma et al., 2019). This was 445 
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evident in our study with increased MDA and EL. The production of ROS induced by Pb 446 

causes formation of LOX (Thakur et al., 2017), which is a symptom of a significant damage 447 

to cell lipids. In our experiment, exogenous supplementation of Asp and Thi suppressed the 448 

LOX activity in wheat plants under Pb stress. The decreased membrane leakage owing to the 449 

externally applied of Asp and Thi might have resulted from the enhanced antioxidant activity, 450 

which in turn might have kept the membrane composition and ultrastructure intact. 451 

 452 

Reduced oxidative damage due to Asp and Thi application could be linked with the 453 

efficient functioning of antioxidant defense mechanism. The Asp and Thi application under 454 

Pb stress noticeably augmented the activities of SOD, APX and CAT as well as those of the 455 

AsA-GSH cycle. The increased antioxidant enzyme activities due to Asp application could be 456 

attributed to Asp signaling as it interacts with H2O2. This has also been reported by Gaufichon 457 

et al. (2010). The treatment of Asp and Thi augmented the activity of GR, scavenging H2O2 458 

via the AsA-GSH cycle, which achieved reduced oxidative stress due to Pb stress. Earlier 459 

reports showed that supplementation of Thi augmented the activities of CAT and SOD in salt 460 

stressed maize plants (Kaya et al., 2015). Our findings show that Thi upregulated the activities 461 

of SOD, and CAT as well as the AsA-GSH cycle, as similarly reported in lentil (Talukdar et 462 

al., 2016) and chickpea (Ahmad et al., 2021). There is no report in the literature reporting the 463 

joint impact of Asp and Thi on these enzymes’ activities. The improved AsA-GSH cycle-464 

connected enzymes’ activities with the treatment of Asp and Thi might have imparted higher 465 

tolerance to cell organelles against Pb stress. 466 

 Lead reduced AsA contents and augmented DHA contents in the wheat plants, as 467 

earlier reported in Vallisneria natans (Wang et al., 2012). The sole or the combined 468 

application of Asp and Thi augmented the DHAR and MDHAR activities, which increased 469 

AsA/DHA ratio, but reduced DHA content and augmented AsA level in the Pb-stressed wheat 470 
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plants. Talukdar et al. (2016) also found that the supply of Thi to lentil plants under arsenic 471 

stress increased the DHAR activity. 472 

 473 

Enhancement in plant growth, photosynthetic activity and nitrogen metabolism in Pb-474 

stressed wheat plants 475 

Like other stresses, heavy metal pollution negatively affects plant growth (Sabagh et al., 476 

2021). Our study showed that Pb-stress decreased plant growth which is in line with the Pb-477 

induced growth reduction in maize (Rasool et al.,2020) and wheat (Kumar et al.,2018). 478 

Decreased mineral and water uptake due to reduced root growth are the possible reasons for 479 

poor plant growth under Pb-toxicity (Hussain et al., 2017). Reduced uptake of nutrients and 480 

water may decrease chlorophyll synthesis resulting in low photosynthesis, thereby reducing 481 

overall growth of plants (Pourrut et al., 2011). The sole or combined application of Asp and 482 

Thi reduced Pb-induced adverse effects on the wheat growth in the current study. However, 483 

the Asp and Thi together more effectively improved the growth of wheat plants suffering 484 

from Pb-toxicity compared to that by their sole application. The earlier studies have reported 485 

that Thi promotes growth of plants exposed to Pb-toxicity, e.g. maize (Kaya et al., 2013), and 486 

fenugreek (Xalxo and Keshavkant, 2019). The curative impact of Asp or Thi on plant growth 487 

under Pb stress can be linked to improved Fv/Fm and chlorophyll levels in Pb-stressed plants  488 

(Haroun et al., 2010; Ahmad et al., 2021), quite analogous to that found in the wheat plants in 489 

the present investigation. 490 

Under Pb stress the canopy temperature increased from 23.4 ºC to 28.1 ºC. Crop 491 

development is impeded by high canopy temperatures, which can lower biomass and yield 492 

(Rezaei et al., 2015). When Asp and Thi were applied together, the reduced canopy 493 

temperature reached the levels similar to those of the control treatment. This demonstrated 494 
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unequivocally the relationship between decreased canopy temperature in the Asp+Thi 495 

treatments and higher plant growth induced by the Asp+Thi treatment.  496 

 The combined supply of Asp and Thi improved Chl and carotenoid contents, and 497 

Fv/Fm under Pb-free and Pb-stress conditions. Some previous studies have reported that Asp 498 

improved photosynthesis in sunflower (Herrera-Rodríguez et al., 2006), and bean (Haroun et 499 

al., 2010). In addition, the beneficial impact of Thi has been tested on these traits in wheat 500 

(Korat et al., 2020) and chickpea (Vineeth et al., 2016). The favorable impact of Asp and Thi 501 

on photosynthesis-associated parameters under Pb-toxicity may relate to decreased production 502 

of ROS and chlorophyll damage with increased antioxidant enzymes’ activities. Analogous to 503 

our data, Patade et al. (2020) stated that Thi increases GSH and chlorophyll synthesis. 504 

Diminished chlorophyll disruption, improved GSH contents and increased antioxidant defense 505 

system because of Asp or Thi enable plants to growth optimally under Pb stress. In our 506 

experiment, lower MDA and H2O2 concentrations and higher chlorophyll contents were found 507 

in the wheat plants exposed to Asp and Thi compared to those of Pb stressed plants. Previous 508 

researchers have observed a remedial role of Thi in fenugreek (Xalxo and Keshavkant, 2019) 509 

and that of Asp in maize (Zanganeh et al., 2019). There is no available literature indicating the 510 

effect of application Asp+Thi on chlorophyll synthesis. 511 

 512 

High Pb can disrupt plant N-metabolism (Singh et al., 2002; Zanganeh et al., 2019). 513 

For example, a reduction in total nitrogen (N), nitrate (NO3) levels nitrate reductase and (NR) 514 

activity, and an increase in ammonium (NH4) levels were observed under Pb stress in the 515 

current study. Similar findings have been stated earlier exhibiting that Pb suppressed the NR 516 

activity and N levels in plants (Gao et al., 2013; Zanganeh et al., 2019). Nitrate (NO3) is a 517 

main N form used by plants (Andrews et al., 2019). NR functions as a key enzyme in the 518 

conversion of NO3 to NO2 in plant tissues (Imran et al., 2019). Subsequently, NO2 is reduced 519 
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to NH4 via NiR enzyme (Xu et al., 2012). The reduced NO3 amount due to Pb toxicity in the 520 

wheat plants may be related to decreased transpiration, which might have resulted in reducing 521 

NO3 transmission to the shoots of the plant via the xylem system (Xiong et al., 2006). In 522 

addition, increased Pb-induced ROS accumulation may cause cell damage, which results in 523 

reduced NO3 absorption by roots (Xiong et al., 2005). Furthermore, the reduction observed in 524 

NO3 uptake and NR activity in the Pb-stressed wheat plants in the current study can be related 525 

to what   Xiong et al., (2006) observed in Pb-stressed Chinese cabbage. Furthermore, increase 526 

in NH4 content of plants exposed to Pb stress may have been due to inhibition of ammonia 527 

assimilation (Xiao et al., 2008). Surplus ammonium accumulation is injurious for the plant 528 

cells (Wang et al., 2020). Fortunately, plants have effective strategies such as the GS/GOGAT 529 

cycle or the GDH pathways to mitigate harmful ammonia accumulation (Gao et al. 2013). 530 

Ammonium is quickly converted to organic compounds via GS/GOGAT pathway (Liu et al., 531 

2021). Our results exhibited that decreased GS and GOGAT activity in the Pb-stressed plants 532 

may be associated with impaired NH4 assimilation, as observed by decreased N and protein 533 

concentrations and augmented NH4 levels in the current study. In addition, increased GDH 534 

activity due to Pb toxicity could be the reason for decreased activities of GS and GOGAT. 535 

Increased GDH activity is insufficient to get continued NH4
+ assimilation: This was obvious 536 

in terms of reduced growth and increased NH4 concentration in the wheat plants suffering 537 

from Pb toxicity. Furthermore, improved GDH is considered effective in reducing NH4
+ 538 

content and producing glutamate molecule for the synthesis of defensive agents (Gangwar et 539 

al., 2011).  540 

Foliar application of Asp and Thi increased NR activity, total N, NO3 and NO2 levels, 541 

and decreased NH4
+ level as GS and GOGAT utilize ammonium for amino acid synthesis. 542 

This led to more N usage in the chlorophyll synthesis, and improved growth of Pb-stressed 543 

plants. The NR enzyme adjusts the rate of limiting reactions in N-metabolism, thereby 544 
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involving in important metabolic events such as synthesis of secondary compounds containing 545 

N and amino acids (Mokhele et al., 2012; Teixeira et al., 2018). It has been stated by other 546 

researchers that Thi increases the N concentration and NR activity in plants (Garg et al., 2006; 547 

Mani et al., 2014). Increased absorption and assimilation of NO3 converts stored nitrogen into 548 

amino acids (Miller et al., 2008). Furthermore, raised NR activity results in increased N 549 

assimilation (Nazar et al., 2011), which may enhance stress tolerance by increasing protein 550 

synthesis. Moreover, Asp and Thi application decreased the activity of GDH enzyme in the 551 

wheat plants exposed to Pb toxicity, showing that GDH can improve the assimilation of NH4
+ 552 

through adjusting the GS/GOGAT cycle under Pb toxicity. Furthermore, the amelioration of 553 

Pb stress by Asp and Thi is probably due to increased protein content. 554 

 555 

Conclusion 556 

Generally, lead toxicity severely inhibited the growth of wheat plants and impaired water 557 

relations, N metabolism and the AsA-GSH pathway. The supplementation of Asp plus Thi 558 

reduced the damage caused due to oxidative stress by increasing antioxidant enzyme 559 

activities. Furthermore, Asp + Thi promoted N absorption, metabolism, and assimilation by 560 

regulating the NR and NiR activities in the wheat plants under Pb toxicity. The findings show 561 

that the supplementation of Asp plus Thi is effective in establishing a stress response in plants 562 

exposed to lead toxicity; however, a large-scale field research is needed in future to strengthen 563 

the claim. 564 
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 985 

Figures Legends  986 

Fig. 1. Effects of foliar-applied (singly or jointly) asparagine (Asp; 40 mM) or thiourea (Thi; 987 

400 mg/L) on the growth and canopy temperature of wheat seedlings exposed to lead (Pb) 988 

toxicity (100 µM Pb). Thermal and digital images were obtained at the extremity the 989 

experiment. 990 

 991 

Fig. 2. Dry weights of shoot (A) and root (B), leaf chlorophyll a (C), chlorophyll b (D), 992 

carotenoids (E), and Photosystem II quantum efficiency [Fv/Fm (F)] in normally grown 993 

wheat plants (C) and Pb stress (100 µM Pb) and sprayed singly or jointly with 40 994 

mM  asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Different alphabets on bars 995 

within each variable exhibit significant differences (at P < 0.05) among average values  996 

 997 

Fig. 3.Leaf lead (A), root Cd (B) on dry weight (DW) basis, biological concentration factor  998 

[BCF (C)], translocation factor [TF (D)] and biological accumulation factor  [BAC (E)] of Pb, 999 

leaf relative water content [RWC; F)], proline (G), and glycine betaine [GB (H)] content on 1000 

fresh weight (FW) basis and sugar content (I) in wheat plants grown under control (C) and Pb 1001 

stress (100 µM Pb) and sprayed singly or jointly with 40 mM  asparagine (Asp) or 400 mg/L 1002 

thiourea (Thi) (Mean ± S.E). Mean values with different letters within each parameter differ 1003 

significantly (P ≤ 0.05) based on Duncan’s multiple range test.  1004 

  1005 

Fig. 4. Phytochelatins [PC (A)], glutathione-S-transferase [GST (B)], reduced glutathione 1006 

[GSH (C)], oxidized glutathione [GSSG (D)]  on fresh weight (FW) basis, and GSH/GSSG in 1007 

the leaves of normally grown wheat plants (C) and Pb stress (100 µM Pb) and sprayed singly 1008 
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or jointly with 40 mM  asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Different 1009 

alphabets on bars within each variable exhibit significant differences (at P < 0.05) among 1010 

average values.  1011 

 1012 

Fig. 5. Ascorbate [AsA (A)], and dehydroascorbate [DHA (B)] on fresh weight (FW) basis, 1013 

and AsA/DHA ratio (C), hydrogen peroxide [H2O2; D)], and malondialdehyde [MDA; E)] on 1014 

fresh weight basis, and electrolyte leakage [EL (F)], and Lipoxygenase [LOX (G)] in the 1015 

leaves of normally grown wheat plants (C) and Pb stress (100 µM Pb) and sprayed singly or 1016 

jointly with 40 mM  asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Different 1017 

alphabets on bars within each variable exhibit significant differences (at P < 0.05) among 1018 

average values.  1019 

 1020 

Fig. 6. Activities of superoxide dismutase [SOD (A)], catalase [CAT (B)], ascorbate 1021 

peroxidase [APX (C)], glutathione reductase [GR (D)], monodehydroascorbate reductase 1022 

[MDHAR (E)], and dehydroascorbate reductase [DHAR (F)] in the leaves, activities of nitrate 1023 

reductase [NR (G)], nitrite reductase [NiR (H)], glutamine synthatase [GS (I)], glutamate 1024 

synthase [GOGAT (J)] and glutamate dehydrogenase [GDH (K)]  on fresh weight (FW) basis 1025 

of wheat plants grown under control (C) and Pb stress (100 µM Pb) and sprayed singly or 1026 

jointly with 40 mM  asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Mean values 1027 

with different letters within each parameter differ significantly (P ≤ 0.05) based on Duncan’s 1028 

multiple range test.  1029 

 Fig. 7. Leaf total nitrogen [N (A)] on dry weight (DW) basis, leaf nitrate [NO3
- (B)], leaf 1030 

ammonium [NH4
+ (C)], total amino acid (D) and total soluble protein contents on fresh weight 1031 

(FW) basis in normally grown wheat plants (C) and Pb stress (100 µM Pb) and sprayed singly 1032 

or jointly with 40 mM asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Different 1033 
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alphabets on bars within each variable exhibit significant differences (at P < 0.05) among 1034 

average values.  1035 
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Fig. 1. Effects of foliar-applied (singly or jointly) asparagine (Asp; 40 mM) or thiourea

(Thi; 400 mg/L) on the growth and canopy temperature of wheat seedlings exposed to

lead (Pb) toxicity (100 µM Pb). Thermal and digital images were taken at the end of

the experiment.
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Fig. 2. Shoot (A) and root (B) dry weight (DW), leaf chlorophyll a (C), chlorophyll b (D),

carotenoids (E) on fresh weight (FW) basis, and Photosystem II quantum efficiency [Fv/Fm (F)] in

wheat plants grown under control (C) and Pb stress (100 µM Pb) and sprayed singly or jointly with

40 mM asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Mean values with different

letters within each parameter differ significantly (P ≤ 0.05) based on Duncan’s multiple range test.
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Fig. 3. Leaf lead (A), root Cd (B) on dry weight (DW) basis, biological concentration factor [BCF (C)],

translocation factor [TF (D)] and biological accumulation factor [BAC (E)] of Pb, leaf relative water

content [RWC; F)], proline (G), and glycine betaine [GB (H)] content on fresh weight (FW) basis and

sugar content (I) in wheat plants grown under control (C) and Pb stress (100 µM Pb) and sprayed singly or

jointly with 40 mM asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Mean values with

different letters within each parameter differ significantly (P ≤ 0.05) based on Duncan’s multiple range

test.
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Fig. 4. Phytochelatins [PC (A)], glutathione-S-transferase [GST (B)], reduced
glutathione [GSH (C)], oxidized glutathione [GSSG (D)] on fresh weight (FW) basis, and

GSH/GSSG in the leaves of wheat plants grown under control (C) and Pb stress (100

µM Pb) and sprayed singly or jointly with 40 mM asparagine (Asp) or 400 mg/L

thiourea (Thi) (Mean ± S.E). Mean values with different letters within each parameter

differ significantly (P ≤ 0.05) based on Duncan’s multiple range test.
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Fig. 5. Ascorbate [AsA (A)], and dehydroascorbate [DHA (B)] on fresh weight (FW)

basis, and AsA/DHA ratio (C), hydrogen peroxide [H2O2; D)], and malondialdehyde

[MDA; E)] on fresh weight basis, and electrolyte leakage [EL (F)], and Lipoxygenase

[LOX (G)] in the leaves of wheat plants grown under control (C) and Pb stress (100

µM Pb) and sprayed singly or jointly with 40 mM asparagine (Asp) or 400 mg/L

thiourea (Thi) (Mean ± S.E). Mean values with different letters within each parameter

differ significantly (P ≤ 0.05) based on Duncan’s multiple range test.
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Fig. 6. Activities of superoxide dismutase [SOD (A)], catalase [CAT

(B)], ascorbate peroxidase [APX (C)], glutathione reductase [GR (D)],

monodehydroascorbate reductase [MDHAR (E)], and dehydroascorbate

reductase [DHAR (F)] in the leaves, activities of nitrate reductase [NR

(G)], nitrite reductase [NiR (H)], glutamine synthatase [GS (I)],

glutamate synthase [GOGAT (J)] and glutamate dehydrogenase [GDH

(K)] on fresh weight (FW) basis of wheat plants grown under control (C)

and Pb stress (100 µM Pb) and sprayed singly or jointly with 40

mM asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean ± S.E). Mean

values with different letters within each parameter differ significantly (P

≤ 0.05) based on Duncan’s multiple range test.
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Fig. 7. Leaf total nitrogen [N (A)] on dry weight (DW) basis, leaf nitrate [NO3
- (B)], leaf

ammonium [NH4
+ (C)], total amino acid (D) and total soluble protein contents on fresh

weight (FW) basis in wheat plants grown under control (C) and Pb stress (100 µM Pb) and

sprayed singly or jointly with 40 mM asparagine (Asp) or 400 mg/L thiourea (Thi) (Mean

± S.E). Mean values with different letters within each parameter differ significantly (P ≤

0.05) based on Duncan’s multiple range test.
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Highlights 

• Lead (Pb) reduced biomass and pigment content, and increased oxidative stress. 

• The application of Asp and Thi together was more effective in enhancing Pb tolerance 

in the wheat 

• Asp and Thi supplied improved ascorbate-glutathione related enzymes. 

• Asp and Thi supplied enhanced key nitrogen metabolism related enzymes. 
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